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CROSS SECTIONS EXHIBITING SMALL AND SIGNIFICANT WARPING

N/

SMALL WARPING INTENSE WARPING

(Closed shaped cross sections) (Open shaped cross sections)




Warping : Free (Not Restrained)

Uniform Torsion

Linear theory: Saint—Venant, 1855

(Are there only shear stresses in case of
geometrically nonlinear effects?)
Twisting Moment: Variable

Warping (Mt): Restrained

Nonuniform Torsion

Linear theory: Wagner, 1929

(Stress field in case of

geometrically nonlinear effects?)
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COMPARISON OF TORSIONAL DEFORMATIONS OF THIN WALLED TUBES
HAVING CLOSED AND OPEN SHAPED CROSS SECTIONS
0 0y

v, =100mm
t =1mm

[tClose _ 30000[t0pen

— Even 1n presence of warping

restraints, torsional rigidity of the
open shaped section bar does not
reach the one of the closed shaped
section bar

Geometrically nonlinear effects > Members with small torsional rigidity
(e.g. with open-shaped sections) are prone to torsional deformations of such
magnitudes that it 1s no longer adequate to treat twisting rotations as small
even in the linearly elastic regime (large displacement - small strain theory)



Direct Torsion

(Equilibrium Torsion)

Bridge deck of box shaped cross section
curved in plan = (Permanent) torsional
loading due to self-weight

Indirect Torsion

(Compatibility Torsion)

7

Cracking due to creep and shrinkage
effects - Significant reduction of
torsional rigidity
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Circular cross sections, : Czrculal-f cross sections. (no WA l%owev.er/ axial
uniform torsion (Young, SHoviening occurs, due to) geonietrical nonlinearity’)
. s : : .
1807) Uniiforin torsion (torsionadl loading: is, constant aloyng: te

bar)

* Valid  for: thin. walled, cross. sections. (Midline

Open shaped thin walled cross employed)
sections, nonuniform torsion > o Warping  restraints.  are.  taken o) dccount

(Attard, 1986) (nonuniform toysion theory),
ol Arbitrary: torsionadl lodading: conditions. (nonunformn

torSIon Hieory)
*! Reliability: Depends, on thiickness, of shell elements
COMPrisSing the bedin

' Valid for: arbitrarily: shiaped. cross: sections. (Lhick or

Arbitrarily shaped cross Thiniwalled)

sections, nonuniform torsion o Warping vestraints: are takern o) decount
(Sapountzakis and Tsipiras, * Arbitrary: torsionadl  lodding: conditions, (nonuniforimn
2010) 1oVS107 1eory)
o BV Ps formulated employing theory. of S elasticity
' Numerical solution of BVPs




ASSUMPTIONS OF ELASTIC THEORY OF NONLINEAR

NONUNIFORM TORSION
* The bar 18 straight.

® Iihe bar 1s prismatic.
* Distortional deformations of the cross section: ate not allowed! (cross sectional shapeiis not

altered during detormation (y,.=0, distortion neglecied).

*The bar is subjected: tor torsional loading along its longitudmal axis and bar ends
exclusively. Axial and flexural boundary: conditions' ate not atbitrary.

® The bar may: twist freely. None axis of twist 1s imposed due to construction requirements

® Sccondary: torsionall moement deformation effect (taking imtor account warping shear
stresses! i the global equilibnium: off ther bar) 1s neglected! (This elfect 1sf important 1 bars! of
closed shaped coss sections (Massonnet, 1983) and i short bars).

* Flexural displacements, off the cress section dor not mduce; tiansyerse shear deformations
(analogous with the Bermoulli-Euler assumption of flexural loading conditions).

* Bending rotations! of the cress section ane assumed tor be small to; moderate large. Axial
shortening and warping of the barane assumed to) be small.

* The material of the bar 1S homogeneous, isotropic, contintous (no; cracking) and' linearly
clastic: Constitutive relations of linear elasticity are valid (small strain theory,).

*The distribution of stresses at thes baw ends is, such so) that all the aferementioned

assumptions, are valid-




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Consider a prismatic bar of length | with an arbitrarily shaped constant cross-
section occupying the y, z plane (area A)

Material: homogeneous, isotropic, linearly elastic with modulus of elasticity E,
shear modulus G

e The bar is subjected to arbitrarily distributed or concentrated conservative
twisting m, = m, (x) and warping m,, = m,,(x) moments

Employing a principal center of twist coordinate system Sxyz, the transverse
displacement components valid for large rotations Qx(x) are derived as

v:VS(x)—z-sin&’x(x)—y-(]—cos@x(x)) w=wS(x)+y-sin@x(x)—z-(l—cosﬁx(x))

vg(x),wg(x): transverse displacements of the cross-section as a rigid body
with respect to the center of twist S of linear theory




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

V=Yg (x)—z-sin@x(x)—y-(]—cos@x(x)) w=WS(x)+y-Sinﬁx(x)—z-(]—cosﬁx(x))

vg(x),wg (x): transverse displacements of the cross section as a rigid body
with respect to the center of twist S of linear theory
— Valid for arbitrarily large twisting rotations 4,

— vg(x)=wg(x)=0 only for doubly symmetric cross sections. Transverse

displacements of the cross section must arise in order to have zero flexural load!
— There is not any axis of twist for monosymmetric or asymmetric sections(more

on this later...). All fibers are displaced transversely (unlike the linear theory)

— Any other coordinate system other than Sxyz could be used, although
the employed one simplifies the expressions of the theory




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Assuming small bending rotations and vanishing secondary torsional moment
deformation effect (STMDE), the longitudinal displacement component is given as:

u=u,,(x)+0y(x)(z—z¢)—6;, (x)-(y—yc)+¢9)’c(x)-¢§)(y,z)+¢§(x,y,z)
u,, (x): "average" axial displacement of the cross-section — axial shortening of

the bar must arise in order to have zero axial load (Young, 1807)! Fibers

become helices in space (even without warping effects) whereas linear theory
assumes that fibers remain straight (Attard, 1986)

Qy(x),ez (x): Angles of rotation due to bending of the cross-section with respect
to its centroid C

— 6y (x)=06,(x)=0 only for doubly symmetric cross sections
0. (x): The angle of twist per unit length (torsional curvature)
— primary warping analogous to &, (x): STMDE neglected

¢§)(y,z),¢§(x,y,z): primary and secondary warping functions with respect to
the shear center S (related with torsional warping)

— Warping shear stresses are calculated (a posteriori), however their effect

on global equilibrium of the bar (STMDE) is neglected




Center of Twist (S) - Taken as in linear theory!
-5 =S

X5 ,Xx3 |. Point with respect to which the cross sections rotate (no transverse
displacements) (or point where rotation causes no axial and bending
stress resultants

rP [.| : Independent of the center of twist (St. Venant could not calculate the

712,773,

12:713 71 position of the center of twist!)

P S S _w ) :

Uy ’TIZ’TIS’T]]’CS » Dependent of the center of twist
P~ = P,— = - =5  ==5 , =
05 (%2,%3) = Bo (%5, X3 ) = XoX5 +X3X) +C

VZgo —0.0 8(00

®* Method of equilibrium:
Under any coordinate system N =AM, =M, =(0 due to warping normal stresses

—X3 ny,— x2 n3,F

* Energy Method:

Minimization of Strain Energy due to 8C 6CM oC M _
1 I st

warping normal stresses 5)? a_ o




Center of Twist (S) of linear theory
S2 x2 —S3 ég-l—AE:—ES]?

S = _  =p
I, X5 +1,3 %5 +S,¢=—R;

]23 +]33)C3 —S3C—R3

where:

A:Idg 52:-“)_6'361.(2 53:‘[}261.(2

TZZZJ‘XSZCI’.Q 733:“'%226{0 723:_ XZ')_C.? d.Q
(P,
RE=[obda RE=[%bd2 R =% obdo

Q Q Q
s



ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Non-vanishing Green shear strains valid for moderate — large bending rotations,
small axial shortening and warping (suitable for geometrically nonlinear analysis):

. % Ov v 8w8wj 7XZ:(%+%j+{W Ov v awawj

+ +
ox 0y Ox Oy 2% Os. Ox 0z Ox oz

i S

Vv =—07 +(v:g cos 0, + Wy Siné?x)+6?)’c [(%j_z}r [5¢S ]
oy Y%

%/_/

o J/
'

primary secondary

- , ([ 0¢¢ ods
=0y — 0, — 0.)+06 +y |+
7xz Y (VSSln bY WSCOS x) x[[ aZ J yJ [ 82
_ ;\K—J

-

prir;]fary secondary

Employing the "Bernoulli - Euler" assumption (vanishing transverse shear deformation)
the angles of rotation due to bending are obtained as

/ /

Oy (x)=vg -sin6, — WS, -cos 0, 0, (x)=vg -cos O, + WS’ -Sin 0,
— Same result by assuming that the cross section is normal to the deformed axis Sx

— Same result through thin-walled beam theory by assuming vanishing shear strains
at the midline of the shell elements comprising the bar (Attard, 1986)




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

The non-vanishing Green’s strain components are evaluated: (gyy =6, =V = 0)

z

[ ogL op3
_0 . —_Z _|_— 7/xZ:9x. ﬁ_Fy +ﬁ
19 0z

— Secondary warping function ¢§ has been ignored in the normal strain component

i( - +z2)-(6’)’c)2: Second order geometrically nonlinear term of &, "Wagner effect"

2
— Responsible for the axial shortening in doubly symmetric cross section bars

Ky,K,: curvature components (due to bending)
Ky (x) = vS” (x)-sin6, — WS” (x)-cos0,

" " .
Ky (x)=vg (x)-cosO, +wg (x)-sin0,
— Responsible for flexural deformations in monosymmetric and asymmetric
cross section bars




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

*» By considering strains to be small, the generalized Hooke's stress-strains
relations are employed to resolve the work contributing second Piola — Kirchhoff
stress components (suitable for geometrically nonlinear analysis - work
conjugate with Green’s strain components)

r 3 s 3
SXX gXX

Sy sy

15 | \ Pz ) Term related to nonuniform warping

e
Sxx :E{u;n +KY(Z_ZC)_K (y_yC)+(9)’c’¢S
0, (v + 200 )+ (vgf+(Wg)2+(y2+z2)(e;ﬂ}

Normal stresses are not caused solely
due to (nonuniform) warping
(unlike the linear theory)




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

For the nonlinear torsion problem, it has been proved (through a variational
formulation) that the 2" Piola — Kirchhoff stress components may be introduced
into the longitudinal differential equation of equilibrium (Washizu, 1975)

— This differential equation is used to resolve the unknown warping functions

¢§), ¢55 (differential equilibrium equations at the transverse directions are not
satisfied as in linear theory):

Sz _ 0 in region (2 Sy +S,n, =0 on boundary I
0z

— Decomposition of stresses into primary and secondary parts (as in linear theory)

Two boundary value problems (Neumann type boundary conditions) are
obtained after the decomposition of shear stresses into primary and
secondary parts:

2P _ Ops
Vigs =01in Q2 a—S:z-ny—y-nZ on [’
n

E 4 ! ! "m
Vngg Z—E{Mm -I-KY(Z—ZC)—K'Z (y—yc)+6’x ¢§)

+VGVs + WoWg +(y2 + 22)‘9;6);} in 0




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

* Definition of stress resultants with respect to the deformed configuration

Myszxx(z—zC)dQ = I y yC d.Q

P
(%wﬂdﬂ: Primary twisting moment (St. Venant)
4

The rotations of the infinitesimal surfaces

_ .[ é)dQ Warping moment comprisiqg the cross sgction occuring during
deformation are taken into account through
these definitions

’ ] r2 12 IP , ,
N:EA um +§' (VS) + WS) A (9) gx'(ycey+ZC92)
MY:EIYY'|:KY+IBZ(‘9)’C)2 MZ:EIZZ'|:KZ_IB](0),C)2:|
where: A:IdQ IP:J(y2+z2)dQ ]YY:I(Z—ZC)ZdQ [ZZZI(y—yCyd_Q
0

Q Q
1

19)
ﬂ1:2[ZZ JQ()/2+Z )(y yc)d.Q ﬂ2=% (y2+z2)(z—zc)d_(2:

Terms associated with bending due to (geometrically) nonlinear torsion
(B; = B, =0 for doubly symmetric cross-sections)




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

! " U ’ 2

2, 2, 05 O .
It:_[ Y 4+zo 4y 2.5 |40 : St. Venant's torsion constant
Q

0z oy
PY . :
Cy =_[Q(¢S ) d 2 : Warping constant

U, = IQ¢§ -(y2 + zz)d.(z : Term associated with the modification of the warping

moment due to (geometrically) nonlinear torsion (Attard, 1986)
* Principle of virtual work under a total Lagrangian formulation (importance of
variational methods in nonlinear problems: Attard, 1986)

IV(SM 08 + S,y Yy + S, Oy, )dV = jF (¢, -Su+t,-Sv+t, -Sw)da

» Governing equation of torque equilibrium of the bar (for global moment,

transverse shear and axial force equilibrium equations, see Attard, 1986: Analysis

of flexural, torsional, flexural-torsional and lateral-torsional buckling of bars)
—Ny-0,0. + Nz-6y0. — M,y + Myk,

d i \3 , d’M d
_E{MthFEEIn(&x) +Y’¢9X—NyC6’Y—NZCHZ}— dxzwzmt(x)+a[mw(x)]

» Corresponding boundary conditions at the bar's ends
! ] !/ 3 !/ !
(M) +M] + El, (6,) +¥0, — Nycby — Nzcby +m,, —M; |56, =0 (1) (-M,, +M)50,=0 (2)

w




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

For pure torsional loading the axial and bending stress resultants vanish,
thus the governing torque equilibrium equation becomes:

nn 3 4 U4 4 d
EC0; _EEInz (Qx)2 0. —GIl,0; =m, (x) +E[mw(x)]

with the most general boundary conditions at the bar ends:
aM; + a0, =a; (1) BiM,, + B0, = B3 (2)

%Elnz(é?)’c)2 d; : Nonlinear term accounting for large rotations

P 2
Ly = f(J/Z +22) dg—%—4,312lzz — 4, Iyy

Q
m, (x),m,,(x) : externally applied conservative twisting and warping moments

m, (x)= jrty (—zcosO,—ysinf,)+t,(ycosO,—zsinb,)ds m, (x)= —thx¢§)ds
— Geometrical nonlinearity alters the expressions of external loading
UW

M, =-EC{0"+GLO. + éEIn »(6; )3 +m, M, =-ECg {9;; + 7(9; )2 }
S

a;, f; . constants specified at the bar ends (e.g. fully clamped edge:
a,=p,=1,a,=a;=p;,=LF;=0)— Any type of boundary conditions can
be applied by appropriately specifying «;, S;




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

BCsOy- > E1,(0,) 0~ Gl,0, =m, (x)+di[mw(x)], x €(0,)
X

aM, + a0, =a; (1) PiM,, + B0, =3 (2)

n ! ] ! 3 4 UW ! 2
M,=-EC{07+GI0, + 3151,12 (6.) +m, M, =—ECg| 0!+ f(ex)

S

— For monosymmetric (or doubly symmetric) cross section bars, U,, =0 =
In case of uniform torsion and unrestrained warping, 6,.=constant and
M, =GI0. + éEIn ,(6.)
— For asymmetric cross section bars, U,, # 0 = In case of uniform torsion
and unrestrained warping, &, # constant, unlike the linear theory!

— Geometrical nonlinearity always results in increase of torsional rigidity
@(in absence of axial and flexural loading) since straight lines become helices

— Torsion members become fully plastic: Use of plastic methods of
strength design is always possible
— Elastic lateral torsional postbuckling behaviour is imperfection insensitive

— Lateral buckling strength of a beam bent about its strong axis
cannot be less than its weak axis in-plane strengh

G00¢ ‘Jleyed|




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION
— After the resolution of the angle of twist 8, the rest of the kinematical
components can be obtained as:

Ky (x)= Vs (x)-sin6, — wg' (x)-cos 0, OZMY:EIYY'[KYJF'BZ(H;)Z}
OZMZ:EIZZ-[KZ—,@(@;YJ

>
" "

Ky (x)=vg (x)-cosO, +wg (x)-sinb,

"

{vs :_(‘9);)2 -(,82 -sin6, — B, -cos@x)

(subsequent numerical integration)

4

W, =(0)'C)2 (B, -cos O, + ;- sin6,)

’ ] ’ 2 ’ 2 ]P ' \2 .

N =0: Equilibrium of axial forces
] / . ! g [P 1 \2 ’
— (vs) —l—(wS) +;-(6?x) +6?x-(yC¢9Y+ZC¢92)
(subsequent numerical integration)

— Axial shortening always arises (the term é%(@’c )2 does not vanish

J

even in doubly symmetric cross section bars) in order to have zero axial force
— Monosymmetric or asymmetric cross section bars exhibit transverse
deflections: There is not any undisplaced axis of twist unlike linear theory

— Axial and flexural boundary conditions cannot be arbitrary

in order to have zero axial, bending and transverse shear loading




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

The BVP yielding the secondary warping fuction is simplified as

. ogs ¢
iy (z-2c) Ky (r-ye)+ o) i@ U5 _Lon
on G
— Secondary shear stresses arise even in case of a

monosymmetric cross section bar under uniform torsion

Er, , . ofs _ 1,
V2¢5§Z—E[K‘Y(Z—ZC)—K‘Z()/—)/C)} in %:E on I’

— Secondary shear stresses vanish only in case of a
doubly symmetric cross section bar under uniform torsion

45 =0




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION
Example 1 Narrow rectangle Cross-section (doubly symmetric)

Simply supported torsion member (free warping at
both ends)

Uniformly applied torsional loading along the bar

E=200000 MPa
G =80000 MPa
L=1,0m

Present study Trahair (2005)
I, (x104mm4) 6,6488 6,6667
Cs (%107 mm® ) 5,499 0
Ly (x10" mm® ) 1,7778 1,7778




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION
Example 1 Narrow rectangle Cross-section (doubly symmetric)

—<—— Present study with CS=0
——— Trahair (2005)

Linear case > Stiffening of the bar due to the
‘ geometrical nonlinearity

Present study - Angle of twist 0,

[e2]
o

my (1()3kNmm/mm) CS :5_499}([07111]716 CS =(0)

10 0,2114 0,2142
20 0,3618 0,3661
30 0,4741 0,4798
40 0,5643 0,5712
50 0,6403 0,6483
60 0,7063 0,7153
70 0,7650 0,7748

E
g
Z40
on
S
E

N
o

» Only minor discrepancy of the
results if nonuniform warping is
neglected (due to the shape of the
cross section)




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 2 Angle section (monosymmetric)

Concentrated torque M, applied at the free end.
Three boundary conditions are investigated:

« Warping free at both ends (uniform torsion)
» Warping restrained — Warping free (cantilever)

« Warping restrained — Warping restrained

Constants Present study  Attard (1987)

A(mm? 28,06 28,05
Iyy (mm” ) 999,2 998,0
L7 (mm") 2522 249,5
E =89660 MPa 1, (mm*) 1991 1996
G =31130 MPa Ly (x10°mm®) 2,544 2,556

B, (mm) -10,22 -10,33
e (mm) 5,135 5,165
1, (mm* 8,766 8,620
Cs (mm°) 152,154

Ly (x10°mm®) 7,784 7,102

L=177,8 mm




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 2 Angle section (monosymmetric)

—<—— Present study - Warping restrained at both ends
—~— Present study - Warping restrained, warping free
——<—— Present study - Warping free at both ends

8

y(mm)

[] Gregory’s experiment

® Attard’s FEM solution

Measured position
at 75%twist

» Large rotations cause lateral
displacements of the bar’s cross sections

Mt(Ntmm)

—<— Nonlinear - Warping restrained at both ends
—— Nonlinear - Warping restrained, warping free
—<— Nonlinear - Warping free at both ends
~———— Linear - Warping free at both ends

N
o
o
o
l

» Both geometrical nonlinearity
and restraint of warping lead to
stiffening of the bar




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 3 L-shaped cross-section (asymmetric)

concentrated torsional
Steel L-beam: moment at the midpoint
E=210000 MPa

G =80769 MPa
L=1,0m clamped end elastic support,
warping free
k. =200 kNm |/ rad

Constants of the bar
A(cmz) 25,00 3,688
723,593 3,253
132,198 8,391

Cl’l’l4

f
177 (cm4

P
6

)
(cm4)) 1460,417 120,913
) 172118,37 , 167,382
(cm) 8,217 5717,765
B (cm) 3,950 5949,475

H(Fad) 0,430

pp (cm




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 3 L-shaped cross-section (asymmetric)

Constants of the bar
25,00 ye(em
723,593 (cm

132,198 4

(Cm
(
172118,37 U( 6
8,217 I (cm6

n

cm

)
)
)
1460,417  Cg(em?)
)
)

3,950 Lo (em”)
0,430

for M, = 170kNm ~ Maximum values
0, (rad) 2,1928

0. (rad / cm) 0,0483

0; (rad / cm’ 0,0162

0y (rad / cm’ ) 0,0026

3,688

3,253

8,391
120,913
167,382
5717,765
5949,475

Minimum values

0,0000
-0,0433
-0,0130
-0,0041

—<— Geometrically nonlinear case
Geometrically linear case

1 1.5
Orz(rad)

» Torsional rigidity is increased
due to geometrical nonlinearity




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 3 L-shaped cross-section (asymmetric)

Mt=80kNm
——— Total twisting moment
—<— Total linear twisting moment
—— Primary twisting moment
——<— Linear Secondary twisting moment
——— Nonlinear Secondary twisting moment

Mt=80kNm

———— Total warping moment
—— Linear warping moment
——<— Nonlinear warping moment

» The nonlinear warping moment

> The nonlinear secondary twisting moment  reaches very small values
(“Wagner” torque) reaches significant values
locally along the bar




ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

Example 3 L-shaped cross-section (asymmetric)

Mt=80kNm
—<—— Angle of twist - 0x

—

—— Lateral deflection at y direction - vs

—<— Lateral deflection at z direction - ws

» Bars of asymmetric cross-section
exhibit lateral deflections due to
geometrical nonlinearity

Kinematical boundary conditions:
vs (0)=wg(0)=0, vg (0)=wg (0)=0




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

* Flexural, torsional, flexural-tonsional buckling of beams: [n presence of a compressive

axial fonce, the: bending nigidity: off the: beami 1s) reduced (equilibrium: off moments; i the
deformed configuration). When ther axial force reaches a critical value (buckling load), the
beam exhibits significant flexural, torsional or flexurnal-torsional detformations. Postbuckling
analysis mvestigates the equilibrium: pathi off therbuckled beams

* [Lateral=torsional bucklimg off beams: In presencer of fiexurall (bendmg and/or transvense

shear actions) loading, a beam may exhibit tonsional deformations due to nonlinear coupling
between: flexuralt and' torsional deformations, caused by lange twisting rotations. When

extemal actions reach a critical value, the bar exhibits significant flexural-torsional (lateral-

tonsional) detormations. Postbuckling analysis: mvestigates the equilibrium path of the
buckled beam. |

* Distortional, local buckling, ete.




Eccentric Transverse
Shear ILoading; 0.
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Nonuniform shear Nonuniform

stress flow due to 1111 shear stress flow
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Warping due to Warping due to
transverse shear torsion




Warping due to shear

Warping due toshear:

!

® Stress State (Stress field):

Uniform Shear

¢ Strain/Deformation State:

Shear Deformation Coetficients Indirect
account of warping deformation (Timoshenko,

1922)

Warping due to torsion

Warping due to torsion

(Significant in Open Shaped Cross

Sections)

!

® Stress State
&
® Strain State:

Nonuniform Toxsion
Seven degrees of freedom (14x14 [K])
* Additional dof.: Twisting curvature
* Additional stress resultant: Warping
moment




ASSUMPTIONS OF ELASTIC THEORY OF NONLINEAR BENDING
INCLUDING SHEAR DEFORMATIONS

* The bar 18 straight.
® Iihe bar 1s prismatic.
* Distortional deformations, ofi the cross section are not allowed (cross sectional shape: is not

altered during detormation (7, =0, distortion neglecied).

® Cross, sections of the beam remain plane during detormation (as; m Timoshenko beam
theory).

* Bending rotations of the cross! section and axial displacement off the:beam arerassumed to
be small - Second order geometrically: nonlinear analysis, (large bending rotations! atne
iequired for a postbuckling analysis).

* Twisting notations ate assumed: to be small (large twisting notations, are required for a
lateral-torsional analysis).

* The material of the bar 1S homogeneous, isotropic, contintous (no; cracking) and linearly
clastic: Constitutive relations off linear elasticity are valid (smalll strain theory).

*The distribution of stresses at the: bar ends is; such so that all the aforementioned

assumptions, are valid:
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s =|q_P| S
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Use of the principal shear system CXYZ passing through the centroid C
(It is assumed that the center of twist S coincides with the shear center)

Displacement Field: (Arising from the plane sections hypothesis)
u(x,y,z)=u(x)+6y(x)Z-0,(x)Y+ 0, (x)¢§) (»,2)
V(x,z) =v(x)—26?x (x) Oy (x) = —w(x)
w(x,y)=w(x)+y0,(x) 6, (x) =V (x)




Components of the Green Strain Tensor (assumption of
moderate-large deflections and small axial displacement)

2 2
o _du dby , dO; ][(dvj +(dwj ]

dx dx dx 2 \dx E
Eyy =0 &2z =0 Vyz =0

dv do. do. o

7/xy - QZ —Z +
dx dx dx oy
dw d0. do. ogs

=—+6y + e
T = YT e T e



Work contributing components of the Second Piola-Kirchhoff
Stress Tensor

2 2 2
S =E du by , Aoy 4 Hx(¢§)+l (@j +(d—wj
dx dx dx b’ 2\ \dx dx

B P , [ [ o¢5
Sy =8 +8, =G(-0;+V)+G| 6, - — |2

i

B P , ([ od5
sz—sz+sz—G(9Y+W)+G 0. - p +y

y4



Differential Equilibrium Equations of 3D Elasticity
(Body forces neglected)

The second Piola-Kirchhoff stress components are proved that they may be
introduced in the longitudinal differential equilibrium equation
Not Satisfied! - Inconsistency:

Overall equilibrium of the bar is satisfied (energy principle). The violation of the
longitudinal equilibrium equation (along x) and of the associated boundary
condition is due to the unsatisfactory distribution of the shear stresses arising
from the plane sections hypothesis. Thus, in order to correct at the global level
this unsatisfactory distribution of shear stresses, we introduce shear correction
factors in the cross sectional shear rigidities at the global equilibrium equations

P
Sy =G(-6,+v)+G| 6. || |-z

oy . Shear stresses due to torsion:
([ o self-equilibratin
S =G0y +W)+G| b, - s +y / 1 :
0z V2l =0 in
o . Ot
constant distribution: unsatisfactory a—S =z-n,—y-n,onl
n



Stress Resultants

* Shear stress resultants: (), = I Syd2=..=GA, (ﬂ — QZJ
O dx

0, = j S . dQ=..=GA (‘91/ +d_Wj A, A.: Shear areas with respect

Q dx to the y,z axes
1
A, =x,4d =—A4 A, =xr.4 :iA
a, a,
K,k shear correction factors (<1)

a,,a,: shear deformation coetficients(>1)
From the assumed displacement field we would have
obtained shear rigidities GA which are larger than the actual ones

Since we are working with the principal shear system of axes = a,. =0

Thus the relations of shear stress resultants with respect to the kinematical

components are decoupled



Stress Resultants

e 20

Computation of shear deformation coefficients: Energy approach

In general we would have a

From uniform shear

exact — beam theory Uappr From this theory
r 2 2 N r 2 2 N
I Syy +5x 70— a,Q, NLZY SN a0y 0;
226G 2AG | 24AG  AG



Stress Resultants

The rotations of the infinitesimal surfaces comprising

* Axial force: NV = - i ' '
xial force: N = [ S, d(2 the cross section which occur during deformation are

@ taken into account through the definitions of stress
resultants
_ 5 'y
du 1 dw I( dv
N=FA| —+—| — | +—| —
dx 2\ dx 2\ dx

A= f d (2: Surface area of the cross section
0

— Third order geometrically nonlinear analysis (postbuckling analysis):

Requires nonlinear expressions of bending curvatures (or large bending rotations)

— Second order geometrically nonlinear analysis (buckling analysis):

Full expression of N is required

— Linearized second order geometrically nonlinear analysis (buckling analysis):

N 1s taken as N = EA4 % (principle of superposition holds)
X



Stress Resultants

* Bending moments: My = I S Zd (2 M, = —J S, Yd L2

Bending moments are defined with respect to the principal shear system

of axes passing through the centroid of the cross section

do do
My=I(S.272dQ=..=El, Y —FI,, —%£
Y j XX Y dx YZ dx
My=-[8,YdQ=.=FEl,—* 407 ~El,, —% 40y
dx dx

Iy=[2°dQ, I, = [L Y2dQ, Iy, = [jg YZd Q:

Moments of inertia with respect to the centroid of the cross section



Stress lgesultants

. P p [ Ogs p|ods
® Torsional stress resultants: M, = j Se| ———z |+S, +y | |d2

P Q21
Mw :_j Sxx¢S ds2
Q
Torsional stress resultants are defined with respect to the principal shear

system ot axes passing through the center of twist of the cross section

P P
Ml =18t (%—2J+Sf;[a¢5 +y} dQ=..=GI, 49,
5

B P oy Z dx
- 2
M, =—[S,¢§dQ=..=—EC d 9;
dx
P P p
I, = I[y2+z2+ya¢5 —Za¢S jd_Q, Cq = f(¢§)) d:
O 0z oy O

Primary torsion constant and warping constant with respect to the

center of twist of the cross section



Global Equilibrium Equations & Boundary conditions

Method of Equilibrium or Energy Method
— dx | TOTAL POTENTIAL ENERGY
® u, wrdy . OF _d OF d° OF
A0 S \W dw e ang, " 2 =
A ) s 5’91 di;” Y]

R+dR, {4
sz (Euler—Lagrange egns)

Equilibrium of axial forces

dR

dx
’ Ry =N+0.0y +0,0, =N

+py =0

— If the beam's axial force can be determined solely from equilibrium

A\

requirements then the second order and linearized second order theories

iield the same deflections ionli axial shortenini of the beam 1s differenti



Global Equilibrium Equations & Boundary conditions
Method of Equilibrium 4y

Equilibrium of transverse shear forces

dR dR
B4 Z _
A 0 +p,=0
ax Y RN
B dwe dw do,
j RZ_QZ+N dx _QZ+N£dx+yC dxj



Global Equilibrium Equations & Boundary conditions

Method of Equilibrium

R

Equilibrium of torsional moments

dM, dM, dM>  am’  dM, y M
— +—" | =— + +—" |=m_+ — Dyz — MO
’ [ E / / x T PzVc~ PyZc =M,

J =m,+pyYc—PyZc

|aM, My |_ [d°M, dM; dMy
de  dx d’  dx  dx




Global Equilibrium Equations & Boundary conditions

Equilibrium of axial forces
aw__ jEA{dzu dwdw v dv

d’  dx’ dx dedx

}—px (7)

Equilibrium of torsional moments
[aM,  dMyy ) (d’M, dMP LMoy
dx dx dx2 dx dx

j m.+pzyc—PyZc =

ECq

d’o d’0 d’w d% I d°0,

~—Gl,——=~N| yo— 2z 2

dx? dx’ dx’ de A gy’
dw dv [S do. j (2)

mx"'pZyC_pYZC_pX(yCE_ dx e

Inside the bar interval

au+a,N =a;

5]9)(: +52Ml‘ = 53 g] %_i_é‘ZM 53 At the bar ends

— Coupled system of equations due to geometrical nonlinearity



Global Equilibrium Equations & Boundary conditions
Equilibrium of bending moments

2 2
%—Qz+myz0:>EIYd % —EIYZd % —GA(9Y+@)+mY 0 (3)
dx d? d’  ay, dx
2 2
Mz +0, +my; =0=EI, 47 ~EI, d 8Y+GA(dv—HZj+mZ =0 (4)
dx’ d’  ay \dx
Equilibrium of transverse shear forces Inside the bar interval
dR 2 2 2
—y+py=0:>GA a’;_d&z +dN(dv_ do, j+N d_2_ZCd6? +pp= 0(5)
dx dy dx dx dx \ dx dx dx dx
2 2 2
dr; +pZ:0:>GA doy . 4 ;V +dN(d +ycd9 j+N d—2+ycd i +p; =0 (6)
dx a, \ dx dx dx \ dx dx dx dx
B+ PR, = b yw+rR, =3
At the bar ends

P16, + My =p;  Viby+7:My=7;
— Coupled system of equations due to principal shear system of axes,

shear deformation effects and geometrical nonlinearity



Global Equilibrium Equations & Boundary conditions
Combination of equations may be performed in order to uncouple the problem

unknowns - Solution with respect to deflections
Resolution of deflections, twisting rotation and axial displacement:

Px

d’u d’waw d*vdv
EA + —t——
A dd dx o a’ dx

4 4 2 2 2 2 3 3 4 4
E[ZZd_:+EIYZ d W+0€ Ely, {d Py _d Px [ﬂ_zc dﬁx}__?de (d V_ch Hx]__ng{Q_ch exJ‘*'N[ﬂ_ZCd exJ:|+
dx

dx dx? Y GA | e’ \dx dx dx | dx’ dx’ 3 ax’ dx? dx?
El,, | d° d’py (dw de dpy [ d’w d’e 3w d36 d?w L) dv do
vo, —2| P2 G Px | OO,y D | 3N E R e S |3y | St ye o |+ N S ye S | | py 4y | Sz S |-
GA | dx dx dx dx dx | dx dx dx dx dx dx dx dx
J2 420 . .
Y L Inside the bar interval
dx dx
4 4 2 2 2 2 3 3 4 4
EI d d d d
EIYY—d ZV+EIYZd;+aZ 4 d;;z_d};X(d_eryC 0xj—3de d;v+yc ‘Zx -3py d?}+yc ix N4 ZV+yC 0;" +
dx dx GA | dx dx dx dx dx | dx dx dx dx dx dx
2 2 2 2 3 3 4 4
7 GA | dx? dx’ \dx dx dx | dx’ dx’ ax’ ax’ dx? dx? dx dx
2 2
d
|2 ;V +yc ix =0
dx dx
d’e d’6 d’w  d’v I,d°0 dw  dv I do
EC X _GI X _N - + 87 X = — DyZ— o ey, S
S dx4 t dx2 [yc dx2 c dx2 y de x T PzYc ~PyZc —Px| Ve dx € dx Px A dx



Global Equilibrium Equations & Boundary conditions

Combination of equations may be performed in order to uncouple the problem
unknowns - Solution with respect to deflections
Resolution of deflections, twisting rotations and axial displacement:

aut+a,N =a; ,Blv+,82Ry = f; ,3192 +:EZMZ :,53 yiwtyoR, =y;3

_ _ _ —do. - _
V10 +y .My =y; 0,6, +0,M, =6; & Ex+52M w=03 At the bar ends

dw Ely d*w Ely, d’v my
W P =—— gy —————ay,—=——+a, ——
hel‘e. Y i 2 ou 0 72704 e az

El, |dp, dpy(dw  d@ d’w d’o w40
—a; | =4 - X[—+yc xj—2px > tye— [+ N|—5+ye— ||~
G A°| dx dx \ dx dx dx dx dx dx

EI d 2 d’ 3 d’
_aYaZ Y7 l:de _de (ﬂ_zc ij_sz(ﬂ_ZC 9xj+N(ﬂ—ZC ex

G?A%| dx  dx \dx dx dx’ dx? dx’® dx’
3 3
HZ :@'Fay EIZ d v+aY EIYZ d W+ClYm—Z+
dx GA i’ GA g GA
2 2 3 3
+a)2, EIl, dpy_de ﬂ_zc d@x _2PX ﬂ_zcd Hx ‘N ﬂ_zcd (9x N
G2A2 dx dx dx dx de de dx3 dx3

Ely, |dp, dpy(dw  db, d’w  d%6, Sw  d6,
o S ) L)
Resolution of bending rotations: With the above expressions



NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Example 1

E=3.0x10 kN /m? It is worth noting that all
the geometric constants
and shear deformation
A=0.051m’ coefficients of the cross
C. = 4.6961x10m*  S€ction should o]

evaluated with respect to
I, =2.6925x 10~ m* the

v=0.20

principal shear

Iy =158159x10”°m*  coordinate system which

1=1.00m does not coincide with the
principal bending one

24

tan20° =—~

Clj/—ag




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Example 1

In the case of simply supported beam the analytical solution can be obtained by
setting in the differential equations the following expressions of displacement

Ky K Kps 4; 0
Ky Ky Ky 40 =
K3 Kz Ks; 43 0

Without Shear Deformation With Shear Deformation reduction

T e [ compied | it | oo
28°%

The effect of shear deformation is critical for the stability of the beam. The
actual compressive load that causes the buckling of the beam (P,) is smaller
than the load we calculate when the shear deformation is ignored.




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Example 2

E=30x10"kN/m’
G=125x10" kN /m’

[=1.0m
> hinged - hinged

Various boundary conditions
» fixed - fixed

The results have been compared with the corresponding values of
buckling load arising from the Thin Tube Theory for the case where the
shear deformation is neglected.




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Boundary
Conditions
hinged-hinged

without shear deformation

with shear deformation

TTT

Present study

Present study

b2=h2=2 cm

970

975

972

b2=h2=8 cm

53774

54960

51169

b2=h2=20 cm

Boundary
Conditions
fixed-hinged

327887

350017

without shear deformation

266234

With shear deformation

TTT

Present study

Present study

b2=h2=2 cm

1134

1139

1133

b2=h2=8 cm

67177

67352

62134

b2=h2=20 cm

Boundary
Conditions
fixed-fixed

603002

679002

without shear deformation

394392

with shear deformation

TTT

Present study

Present study

b2=h2=2 cm

1436

1439

1432

b2=h2=8 cm

86145

84874

78782

b2=h2=20 cm

962711

919375

506198

Example 2 Monosymmetric cross section beam

In the third case the
cross section is no
longer thin walled. As a
result, the thin tube
theory cannot give
accurate results.

The ignorance of
shear deformation
can lead to incorrect
results which can be
critical for the
stability of the
structure.




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Example 3

length: 1.00 m E=2.1x108 kN/m?

v=0.3 Various Boundary Conditions

t=1cm

g
Q
‘2
)
~

t=4cm

h:

It is worth noting that all the geometric
3.995¢m constants and shear deformation
coefficients of the cross section should be
evaluated with respect to the principal
shear coordinate system which does not
coincide with the principal bending one




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Example 3

without with without with without with
shear shear shear shear shear shear
deformation deformation deformation deformation deformation deformation

1096 1086 1237 1225 1403 1391

. Hinged-Hinged Fixed-Hinged Fixed-Fixed
t

9374 9124 18644 17590 34341 31295

The influence of the shear deformation effect on the buckling load increased due to
the change of thickness of the cross section from 1cm to 4 cm. Actually, this is a result
of the increase of stiffness of the beam and therefore, shear deformation becomes
more critical than bending.




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Example 4 Clamped Beam with Doubly Symmetric Cross Section

Elasticity Modulus E=207GP4 v=0.3
Beam Length /=0.505m Rectangular Cross Section b, xh, =25.4mmx3.175mm

Uniformly Distributed Load p, Induced axial load at the bar (due to

(displacement at middle point) clamped edges)

Effect of
geomefrical
nonlinearities
important

FEM - AE
results coinci

Pz
TR

Q0 005 010 015 020 025 030 035 040 045 0.9
Beam Axis x (m)

for p,=2.0kN/m max w=6.31Tmm (FEM) max w=6.36mm (AEM)
a1l el sl Ee Shear Deformation Effect
Axial Force N=EA[1+—(—WJ ]=—Jé(—w) dx can be ignored
dx 2\ dx 2l ox . .
without shear with shear

Shear Def. Coefficients o, =1.20 a, =387 MaX w=9.76mm max w=9.77mm




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Example 5 Clamped Beam with Monosymmetric Cross Section

Beam Length [ =4.5m  Shear Def. Coefficients o, =1.63 a; =393

Loading

Uniformly distributed transverse loading p,= p,
applied at the cross section’s centroid




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Example 5 Clamped Beam with Monosymmetric Cross Section

[N

W

(=3

(=}
I

Py=Pz (kN/m)
Py=Pz (kN/m)

10.00 15.00 20.00 25.00 30.00 . 200 400 600 800 10.00 12.00 14.00 16.00 18.00

v (cm) w (cm)

Shear Deformation E ffect in middle point's displacements

Py=Pz (kN/m)
Discrepancy (%)

Nonlinear Analysis

500
T T T T T 1000 1500 2000 2500 Linear Analysis

Distributed Load pz=pv (kN/m) 00 3500
-0.10 -0.15 -0.20 -0.25 -0.30 -0.35 pz=p

6x (rad) B Linear Analysis ENonlinear Analysis

(displacements at the middle point of the beam)

——Linear Analysis-AEM-W ithout shear def. —&— Lincar Analysis-AEM -W ith shear def.
—><—NonLinear Analysis-AEM -W ithout shear def. —@®— NonLinear Analysis-A EM -W ith shear def.




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Example 6 Cantilever with asymmetric cross section subjected to
distributed transverse and axial loading

distributed
transverse Pz = -40kN /m
load

Basic load: axial load Px = -20kN /'m

P*40kN/m

concentrated
axial load PX = -120kN

Geometric constants and shear deformation
coefficients of the examined cross section

Coordinate syvstem CFe Coordinate svstem C1Z

Principal shear axes (at S)




NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Example 6 Cantilever with asymmetric cross section subjected to

distributed transverse and axial loading

scale factor p
scale factor p

20.00 30.00 . -5.00 -10.00 -15.00 -20.00 -25.00 -30.00

v (cm) w (cm)

Shear deformation effect in displacement w

scale factor p
Discrepancy (%)

T Scale factor p

20.00 30.00
v (cm)

(displacements at the middle point of the beam)

—&— Linear Analysis-AEM-without shear def. —&— Linear Analysis-AEM-with shear def.
—H=—Nonlineas Analysis-AEM without shear def. —©— Nonlineas Analysis-AEM-with shear def.

== Nonlinear Analysis =@- Linear Analysis
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