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Warping due to 
transverse shear

Warping due to 
torsion
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((DirectDirect: : Equilibrium Torsion,Equilibrium Torsion, IndirectIndirect: : Compatibility TorsionCompatibility Torsion))



CROSS SECTIONS EXHIBITING SMALL AND SIGNIFICANT WARPING

SMALL WARPINGSMALL WARPING
(Closed shaped cross sections)

 

INTENSE WARPINGINTENSE WARPING
(Open shaped cross sections)

 



UniformUniform TorsionTorsion

Linear theory: Saint–Venant, 1855

(Are there only shear stresses in case of

geometrically nonlinear effects?)

Classification of torsion according to longitudinal variation ofClassification of torsion according to longitudinal variation of warping (UNIFORM warping (UNIFORM --
NONUNIFORM TORSION)NONUNIFORM TORSION)

• Warping : Free (Not Restrained)

Nonuniform TorsionNonuniform Torsion

Linear theory: Wagner, 1929

(Stress field in case of

geometrically nonlinear effects?)

• Twisting Moment: Variable

• Warping (Mt): Restrained



COMPARISON OF TORSIONAL DEFORMATIONS OF THIN WALLED TUBES COMPARISON OF TORSIONAL DEFORMATIONS OF THIN WALLED TUBES 
HAVING CLOSED AND OPEN SHAPED CROSS SECTIONSHAVING CLOSED AND OPEN SHAPED CROSS SECTIONS
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Members with small torsional rigidity
(e.g. with open-shaped sections) are prone to torsional deformations of such
magnitudes that it is no longer adequate to treat twist

→Geometrically nonlinear effects

ing rotations as  
even in the linearly elastic regime (large displacement - small strain theory) 

small

Even in presence of warping

restraints,  of the

open shaped section bar does not

reach the one of the closed shaped

section bar

→

torsional rigidity



CLASSIFICATION OF CLASSIFICATION OF TORSION AS A STRESS STATETORSION AS A STRESS STATE

Direct Torsion
(Equilibrium Torsion)

Indirect Torsion
(Compatibility Torsion)

Cracking due to creep and shrinkage 
effects Significant reduction of 
torsional rigidity

Bridge deck of box shaped cross section 
curved in plan (Permanent) torsional 

loading due to self-weight



Problem description of Nonlinear Nonuniform TorsionProblem description of Nonlinear Nonuniform Torsion

Arbitrarily shaped cross 
sections, nonuniform torsion 
(Sapountzakis and Tsipiras, 

2010)

•• Circular cross sections (no warping Circular cross sections (no warping -- however axial however axial 
shortening occurs due to geometrical nonlinearity!)shortening occurs due to geometrical nonlinearity!)

•• Uniform torsion (torsional loading is constant along the Uniform torsion (torsional loading is constant along the 
bar)bar)

Circular cross sections, 
uniform torsion (Young, 

1807)

•• Valid for thin walled cross sections (Midline Valid for thin walled cross sections (Midline 
employed)employed)

•• Warping restraints are taken into account Warping restraints are taken into account 
(nonuniform torsion theory)(nonuniform torsion theory)

•• Arbitrary torsional loading conditions (nonuniform Arbitrary torsional loading conditions (nonuniform 
torsion theory)torsion theory)

•• ReliabilityReliability: : Depends on thickness of shell elements Depends on thickness of shell elements 
comprising the beamcomprising the beam

Open shaped thin walled cross 
sections, nonuniform torsion

(Attard, 1986)

•• Valid for arbitrarily shaped cross sections (Thick or Valid for arbitrarily shaped cross sections (Thick or 
Thin walledThin walled))

•• Warping restraints are taken into accountWarping restraints are taken into account
•• Arbitrary torsional loading conditions (nonuniform Arbitrary torsional loading conditions (nonuniform 

torsion theory)torsion theory)
•• BVPsBVPs formulated employing theory of formulated employing theory of 33D elasticityD elasticity
•• Numerical solution of Numerical solution of BVPsBVPs



ASSUMPTIONS OF ELASTIC THEORY OF NONLINEAR 
NONUNIFORM TORSION

•• The bar is straightThe bar is straight..
•• The bar is prismaticThe bar is prismatic..
•• Distortional deformations of the cross section are not allowed (Distortional deformations of the cross section are not allowed (cross sectional shape is not cross sectional shape is not 
altered during deformationaltered during deformation ((γγ2323=0=0, , distortiondistortion neglectedneglected))..
•• The bar is subjected to torsional loading along its longitudinaThe bar is subjected to torsional loading along its longitudinal axis and bar ends l axis and bar ends 
exclusivelyexclusively.. Axial and flexural boundary conditions are not arbitrary.Axial and flexural boundary conditions are not arbitrary.
•• The bar may twist freely. None axis of twist is imposed due to The bar may twist freely. None axis of twist is imposed due to construction requirementsconstruction requirements
•• Secondary torsional moment deformation effect (taking into accoSecondary torsional moment deformation effect (taking into account warping shear unt warping shear 
stresses in the global equilibrium of the bar) is neglected stresses in the global equilibrium of the bar) is neglected (This effect is important in bars of (This effect is important in bars of 
closed shaped cross sections (closed shaped cross sections (MassonnetMassonnet, 1983) and in short bars), 1983) and in short bars)..
•• Flexural displacements of the cross section do not induce transFlexural displacements of the cross section do not induce transverse shear deformations verse shear deformations 
(analogous with the Bernoulli(analogous with the Bernoulli--Euler assumption of flexural loading conditions).Euler assumption of flexural loading conditions).
•• Bending rotations of the cross section are assumed to be small tBending rotations of the cross section are assumed to be small to moderate largeo moderate large.. Axial Axial 
shortening and warping of the bar are assumed to be small.shortening and warping of the bar are assumed to be small.
•• The material of the bar is homogeneous, isotropic, continuous (nThe material of the bar is homogeneous, isotropic, continuous (no cracking) and linearly o cracking) and linearly 
elastic: Constitutive relations of linear elasticity are valid (elastic: Constitutive relations of linear elasticity are valid (small strain theory)small strain theory)..
•• The distribution of stresses at the bar ends is such so that allThe distribution of stresses at the bar ends is such so that all the aforementioned the aforementioned 
assumptions are validassumptions are valid..



( )x xθ
Employing a principal center of twist coordinate system Sxyz, the transverse
displacement components valid for large rotations  are derived as      

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION
Consider a prismatic bar of length l with an arbitrarily shaped constant cross-
section occupying the y, z plane (area A)

( ) ( ) ( )( )S x xv v x z sin x y 1 cos xθ θ= − ⋅ − ⋅ − ( ) ( ) ( )( )S x xw w x y sin x z 1 cos xθ θ= + ⋅ − ⋅ −

Material: homogeneous, isotropic, linearly elastic with modulus of elasticity E, 
shear modulus G

( ) ( )
 The bar is subjected to arbitrarily distributed or concentrated conservative

   twisting  and warping  momentst t w wm m x m m x
•

= =
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( ) ( )S Sv x ,w x
S

: transverse displacements of the cross-section as a rigid body
with respect to the center of twist  of linear theory



ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

( ) ( ) ( )( )S x xv v x z sin x y 1 cos xθ θ= − ⋅ − ⋅ − ( ) ( ) ( )( )S x xw w x y sin x z 1 cos xθ θ= + ⋅ − ⋅ −
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( ) ( )S Sv x ,w x
S

: transverse displacements of the cross section as a rigid body
with respect to the center of twist  of linear theory

xθ→  Valid for arbitrarily large twisting rotations 
( ) ( )S Sv x w x 0→ = =  only for doubly symmetric cross sections. Transverse

displacements of the cross section must arise in order to have zero flexural load!
→ (more
on this late

 There is not any axis of twist for monosymmetric or asymmetric sections
. All fibers are displaced transversely (unlike the linear ther...) ory)

→  Any other coordinate system other than Sxyz could be used, although
the employed one simplifies the expressions of the theory



Assuming small bending rotations and vanishing secondary torsional moment
deformation effect (STMDE), the longitudinal displacement component is given as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P S
m Y C Z C x S Su u x x z z x y y x y,z x, y,zθ θ θ φ φ′= + ⋅ − − ⋅ − + ⋅ +

( )mu x → axial shortening of
the bar must arise in order to have zero axial load

: "average" axial displacement of the cross-section
(Young, 180 ! Fibers

become helices in space (even without warping ef
7)

fects) whereas linear theory
assumes that fibers remain straig (Attard, ht 1986)

( ) ( ): Angles of rotation due to bending of the cross-section with respect
                      to its centroid 

Y Zx , x
C

θ θ

( )
( )

x

x x

x

θ

θ

′→

′ : The angle of twist per unit length (torsional curva

primary warping analogous to : STMDE negle

ture)

cted

( ) ( )P S
S Sy,z , x, y,z

S
φ φ

→

: primary and secondary warping functions with respect to
                               the shear center  (related with torsional warpin

Warping shear stresses are calculated (
g)

a posteriori), however their effect
on global equilibrium of the bar (STMDE) is neglected

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

( ) ( )Y Zx x 0θ θ→ = =  only for doubly symmetric cross sections



Center of TwistCenter of Twist ((SS)) -- Taken as in linear theory!Taken as in linear theory!
S S
2 3x ,x : Point with respect to which the cross sections rotate (no transverse 

displacements) (or point where rotation causes no axial and bending 
stress resultants 

P P
12 13 t, ,I :τ τ Independent of the center of twist (St. Venant could not calculate the 

position of the center of twist!)

P S S w
1 12 13 11 Su , , , ,C :τ τ τ Dependent of the center of twist

( )P P S S
S 2 3 O 2 3 2 3 3 2

P
2 P O

O 3 2 2 3

x ,x ( x ,x ) x x x x c

0 , x n x n ,
n

ϕ φ

ϕϕ Ω Γ

= − + +

∂
∇ = = ⋅ − ⋅

∂• Method of equilibrium:

2 3 0N M M= = =Under any coordinate system due to warping normal stresses

• Energy Method:
Minimization of Strain Energy due to 
warping normal stresses

2 3
0M M MC C C

x x c
∂ ∂ ∂

= = =
∂ ∂ ∂

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Center of TwistCenter of Twist ((SS)) of linear theoryof linear theory

S S P
2 2 3 3 S

S S P
22 2 23 3 2 2

S S P
23 2 33 3 3 3

S x S x A c R

I x I x S c R

I x I x S c R

− + = −

+ + = −

+ − =

2 3 3 2

2 2
22 3 33 2 23 2 3

P P P P P P
S O 2 3 O 3 2 O

A d S x d S x d

I x d I x d I x x d

R d R x d R x d

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

ϕ Ω ϕ Ω ϕ Ω

= = =

= = = −

= = =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

where:

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Non-vanishing Green shear strains valid for moderate – large bending rotations, 
small axial shortening and warping (suitable for geometrically nonlinear analysis):

xy
v u u u
x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂

= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

v v w w
x y x y

⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

xz
w u u u
x z x z

γ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
v v w w
x z x z

⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Employing the  (vanishing transverse shear deformation)
the angles of rotation d

"Bernoulli - Euler"
ue to bending are o

assumptio
btain
n

ed as

( )Y S x S xx v sin w cosθ θ θ′ ′= ⋅ − ⋅ ( )Z S x S xx v cos w sinθ θ θ′ ′= ⋅ + ⋅

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

( )
P S
S S

xy Z S x S x xv cos w sin z
y y
φ φγ θ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′= − + + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
secondaryprimary

( )
P S
S S

xz Y S x S x xv sin w cos y
z z
φ φγ θ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′= − − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
secondaryprimary

→Same result by assuming that the cross section is normal to the deformed axis Sx

→Same result through thin-walled beam theory by assuming vanishing shear strains
at the midline of the shell elements comprising the bar (Attard, 1986)



The non-vanishing Green’s strain components are evaluated:

( ) ( )22 2
x xx

Y Z

1 y z
2

,

θ ε

κ κ

κ

′+ ⋅

→

: Second order geometrically nonlinear term of , "Wagner effect"

Responsible for the axial shortening in doubly symmetric cross section bars
: curvature components (due to bending)

( ) ( ) ( )
( ) ( ) ( )

Y S x S x

Z S x S x

x v x sin w x cos

x v x cos w x sin

θ θ

κ θ θ

′′ ′′= ⋅ − ⋅
′′ ′′= ⋅ + ⋅

→Responsible for flexural deformations in monosymmetric and asymmetric
cross section bars 

P S
S S

xy x z
y y
φ φγ θ

⎛ ⎞∂ ∂′= ⋅ − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

P S
S S

xz x y
z z
φ φγ θ

⎛ ⎞∂ ∂′= ⋅ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

P
xx m x SY C Z C

22

x C Y C

22
x

Z
2

S S

u y,zz z y y

y

y z
1 v w z
2

ε θ φ θ θκ κ θ

θ

′ ′′ ′= + − + ⋅ − ⋅ ⋅ + ⋅ +⋅ − ⋅ −

′+ ⋅
⎡ ⎤′ ′+ + +⎢ ⎥
⎣ ⎦

         

S
Sφ→  Secondary warping function  has been ignored in the normal strain component

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

2

xx
u 1 u
x 2 x

ε ∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂⎝ ⎠

2 2v w
x x

⎛ ⎞⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

( )yy zz yz 0ε ε γ= = =



By considering strains to be small, the generalized Hooke’s stress-strains 
relations are employed to resolve the work contributing second Piola – Kirchhoff 
stress components (suitable for geometrically nonlinear analysis - work 
conjugate with Green’s strain components) 

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

xx xx

xy xy

xz xz

S E 0 0
S 0 G 0

0 0 GS

ε

γ

γ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= ⇒⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

( ) ( ){
( ) ( ) ( ) ( )( )

xx m Y C Z C

2 2 22 2
x C Y C Z S S x

P
x SS E u z z y y

1y z v w y z
2

κ κ

θ θ θ

φ

θ

θ′′′= + − − − +

⎫⎡ ⎤′ ′ ′ ′− + + + + + ⎬⎣ ⎦⎭
        

P S
S S

xy xS G z
y y
φ φθ

⎡ ⎤⎛ ⎞∂ ∂′= − +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

P S
S S

xz xS G y
z z
φ φθ

⎡ ⎤⎛ ⎞∂ ∂′= + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

Normal stresses are not caused solely
due to (nonuniform) warping
(unlike the linear theory)

Term related to nonuniform warping



For the nonlinear torsion problem, it has been proved (through a variational 
formulation) that the 2nd Piola – Kirchhoff stress components may be introduced 
into the longitudinal differential equation of equilibrium (Washizu, 1975)

P S
S S,φ φ

→ This differential equation is used to resolve the unknown warping functions
      (differential equilibrium equations at the transverse directions are not
    satisfied as in linear theory):

xyxx xz
xy y xz z

SS S 0 S n S n 0
x y z

Ω
∂∂ ∂

+ + = + =
∂ ∂ ∂

 in region                        on boundary Γ

Two boundary value problems (Neumann type boundary conditions) are
obtained after the decomposition of shear stresses into primary and
secondary parts:

P
2 P S

S y z0 z n y n
n
φφ Ω Γ∂

∇ = = ⋅ − ⋅
∂

 in                                                           on 

( ) ( ){

( ) ( )

( ) }

2 S
S m Y C Z C

S
S x

x C Y C Z x C Y C Z

2 2
S S S S

P
x S

x x

E u z z y y
G

ty z y z
n G

v v w w y z

θ φφ κ κ

φθ θ θ θ θ θ Γ

θ θ Ω

′′ ′ ′∇ = − + − − − +

∂′′ ′ ′ ′− + − + =
∂

′ ′′ ′ ′′ ′ ′′+ + + +

′′′

                         on 

                     in 
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→Decomposition of stresses into primary and secondary parts (as in linear theory)



• Definition of stress resultants with respect to the deformed configuration

xxN S d
Ω

Ω= ∫ ( )Y xx CM S z z d
Ω

Ω= −∫ ( )Z xx CM S y y d
Ω

Ω= − −∫

: Primary twisting moment (St. Venant)
P P

P P PS S
t xy xzM S z S y d

y zΩ

φ φ Ω
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= ⋅ − + ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

P
w xx SM S d

Ω

φ Ω= − ∫ : Warping moment

( ) ( ) ( ) ( )
2 2 2P

m S S x x C Y C Z
1 IN EA u v w y z
2 A

θ θ θ θ
⎡ ⎤⎛ ⎞′ ′ ′ ′ ′= ⋅ + ⋅ + + ⋅ − ⋅ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
( )2Y YY Y 2 xM EI κ β θ⎡ ⎤′= ⋅ +

⎣ ⎦ ( )2Z ZZ Z 1 xM EI κ β θ⎡ ⎤′= ⋅ −
⎣ ⎦

A d
Ω

Ω= ∫where: ( )2 2
PI y z d

Ω

Ω= +∫ ( )2YY CI z z d
Ω

Ω= −∫ ( )2ZZ CI y y d
Ω

Ω= −∫

( )( ) ( )( )2 2 2 2
1 C 2 C

ZZ YY

1 2

1 1y z y y d , y z z z d
2I 2I

0

Ω Ω

β Ω β Ω

β β

= + − = + −

= =

∫ ∫  :

Terms associated with bending due to (geometrically) nonlinear torsion
(  for doubly symmetric cross-sections)

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

The rotations of the infinitesimal surfaces
comprising the cross section occuring during
deformation are taken into account through
these definitions



P
t t xM GI θ′= ⋅ ( )2w

w S x x
S

UM EC
2C

θ θ
⎡ ⎤
′′ ′= − ⋅ + ⋅⎢ ⎥

⎣ ⎦
P P

2 2 S S
tI y z y z d

z yΩ

φ φ Ω
⎛ ⎞∂ ∂

= + + ⋅ − ⋅⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫ : St. Venant's torsion constant

( )2P
S SC d

Ω
φ Ω= ∫  : Warping constant

( )P 2 2
w SU y z d

Ω
φ Ω= ⋅ +∫  : Term associated with the modification of the warping

moment due to (geometrically) nonlinear torsion (Attard , 1986)
• Principle of virtual work under a total Lagrangian formulation (importance of 
variational methods in nonlinear problems: Attard, 1986)

( ) ( )xx xx xy xy xz xz x y zV F
S S S dV t u t v t w dAδε δγ δγ δ δ δ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅∫ ∫
Governing equation of torque equilibrium of the bar (for global moment, 

transverse shear and axial force equilibrium equations, see Attard, 1986: Analysis 
of flexural, torsional, flexural-torsional and lateral-torsional buckling of bars)

( ) ( ) ( )
C Z x C Y x Z Y Z

2
3P w

t n x x C Y C Z t w2

Ny Nz M M
d Md 1 dM EI Ny Nz m x m x

dx 2 dxdx

Υθ θ θ θ κ κ

θ Ψθ θ θ

′ ′− + − +

⎡ ⎤′ ′− + + − − − = + ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

( ) ( ) ( )(1)   (2)3P
w t n x x C Y C Z w x w xt w

1M M EI Ny Nz m M 0 M M 0
2

θ Ψθ θ θ δθ δθ⎡ ⎤′ ′ ′ ′+ + + − − + − = − + =⎢ ⎥⎣ ⎦

Corresponding boundary conditions at the bar‘s ends
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For pure torsional loading the axial and bending stress resultants vanish, 
thus the governing torque equilibrium equation becomes:

( ) ( ) ( )2
S x n2 x x t x t w

3 dEC EI GI m x m x
2 dx

θ θ θ θ′′′′ ′ ′′ ′′− − = + ⎡ ⎤⎣ ⎦

1 t 2 x 3 1 w 2 x 3a M Mα θ α β β θ β′+ = + =
with the most general boundary conditions at the bar e

   (1)      
nd

        
s:

 (2)

( )
222 2 2 2P

n2 1 ZZ 2 YY
II y z d 4 I 4 I
AΩ

Ω β β= + − − −∫

( )2n2 x x
3 EI
2

θ θ′ ′′ : Nonlinear term accounting for large rotations

( ) ( )t wm x ,m x  : externally applied conservative twisting and warping moments

( ) ( )               3 2w
t S x t x n2 x w w S x x

S

U1M EC GI EI m M EC
2 2C

θ θ θ θ θ
⎡ ⎤

′′′ ′ ′ ′′ ′= − + + + = − +⎢ ⎥
⎣ ⎦

i i

2 2 1 3 1 3

i i

,
a 1 a a 0

,

α β
β β β

α β
= = = = = = →

 : constants specified at the bar ends (e.g. fully clamped edge:
, )  Any type of boundary conditions can

be applied by appropriately specifying 
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( ) ( ) ( )t y x x z x xm x t z cos y sin t y cos z sin ds
Γ

θ θ θ θ= − − + −∫ ( ) P
w x Sm x t ds

Γ
φ= −∫

→ Geometrical nonlinearity alters the expressions of external loa ding



( ) ( ) ( ) ( )2
S x n2 x x t x t w

3 dEC EI GI m x m x , x 0,l
2 dx

θ θ θ θ′′′′ ′ ′′ ′′− − = + ∈⎡ ⎤⎣ ⎦  

1 t 2 x 3 1 w 2 x 3a M Mα θ α β β θ β′+ = + =   (1)               (2)
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x

wU 0
θ

→
′

≠
≠

⇒ In case of uniform torsion
and unrestrained warping,

 For asymm
 constant,

etric cross section ba
 unlike the linear the

rs,  
ory!

( ) ( )               3 2w
t S x t x n2 x w w S x x

S

U1M EC GI EI m M EC
2 2C

θ θ θ θ θ
⎡ ⎤

′′′ ′ ′ ′′ ′= − + + + = − +⎢ ⎥
⎣ ⎦

( )
x

3
t t x n2 x

wU 0

1M GI EI
2

θ

θ θ

′

′

→ = ⇒

′= +

In case of uniform torsion and unrestrained warping
 For monosymmetric (or doubly symmetric) cross section bars

, =constant and
,  

→  
(in ab

Geomet
sence 

rical nonlin
of axial and

earity always results in
 flexural loading)

 increase of torsional rigidity
since straight lines become hel ices

→ Torsion members become fully plastic: Use of plastic methods of
strength design is always po

 
ssible

→ Elastic lateral torsional postbuckling behaviour is imperfection insensi tive
→ Lateral buckling strength of a beam bent about its strong axis
cannot be less than its weak axis in-plane 

 
strengh

Trahair, 2005



xθ→  After the resolution of the angle of twist  the rest of the kinematical
     components can be obtained as:

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( )

2
YY Y 2 x

2
Z Z

Y

1 xZ Z

0 M

0 M

2
s x 2 x 1 x

2
s x 2 x 1

EIY S x S x
EI

Z S x S x

x

v sin cos

w

x v x sin w x cos

x v x cos w x si

cos sin

n

κ β θ

κ β θ

θ β θ β θ

θ β θ

θ

κ

β

κ θ

θ θ

θ

⎡ ⎤′= ⋅ +⎣ ⎦
⎡ ⎤

=

′= ⋅ −= ⎣ ⎦

′′ ′′ ⎫= ⋅ − ⋅ ⎪⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎬′′ ′

⎧ ⎫′′ ′= − ⋅ ⋅ − ⋅⎪ ⎪
⎨ ⎬′′ ′= ⋅ ⋅ + ⋅⎪ ⎪⎭

′= ⋅ + ⋅ ⎪⎭

⎩
  subsequent numeric( )al integration

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 2P
m S

2 2 2

S x x C Y C Z

P
m s s x x C Y C Z

N

1 IN EA u v w y z
2 A

0
1 Iu v w y z
2 A

θ θ θ θ

θ θ θ θ

=
⎡ ⎤′ ′ ′ ′ ′= − ⋅ + + ⋅ + ⋅ +⎢ ⎥

⎫⎡ ⎤⎛ ⎞′ ′ ′ ′ ′= ⋅ + ⋅ + + ⋅ − ⋅ + ⎪⎢ ⎥⎜ ⎟ →⎬⎝ ⎠⎣ ⎦
⎪⎭

⎣ ⎦

: Equilibrium of axial forces

subsequent numerical integration
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( )2P
x

1 I
2 A

θ→ ′Axial shortening always arises (the term  does not vanish

even in doubly symmetric cross section bars) in order to have zero axial f

 

orce
→ Monosymmetric or asymmetric cross section bars exhibit transverse
deflections: There is not any undisplaced axis of twist unlike linear theory
→ Axial and flexural boundary conditions cannot be arbitrary
in order to have zero axial, bending and transverse shear loading
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→ Secondary shear stresses arise even in case of a
monosymmetric cross section bar under uniform torsion

The BVP yielding the secondary warping fuction is simplified as

( )
( ) ( ) }

2 S 2 2 P
S x x

S
P S x

Y C Z C x S

E Iy z
G A

tz z y y
n G

φ θ θ

φκ κ θ φ Ω Γ

⎧⎡ ⎤ ′ ′′∇ = − + −⎨⎢ ⎥⎣ ⎦⎩
∂′ ′ ′′′+ − − − + =
∂

                      in          on 

→ Secondary shear stresses vanish only in case of a
doubly symmetric cross section bar under uniform torsion

( ) ( )
S

2 S S x
S Y C Z C

tE z z y y
G n G

φφ κ κ Ω Γ∂′ ′⎡ ⎤∇ = − − − − =⎣ ⎦ ∂
in          on 

S
S 0φ =



Example 1   Narrow rectangle Cross-section (doubly symmetric)

Simply supported torsion member (free warping at 
both ends)

Uniformly applied torsional loading along the bar

 
 

E 200000 MPa
G 80000 MPa
L 1,0 m

=
=
=

b=2.0m

y
C,
S

z

a=0.1m

 

tm

6,6488 6,6667

5,499 0

1,7778 1,7778

Trahair (2005)Present study

( )4 4
tI 10 mm×

( )7 6
SC 10 mm×

( )10 6
n2I 10 mm×

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Example 1   Narrow rectangle Cross-section (doubly symmetric)

Only minor discrepancy of the 
results if nonuniform warping is 
neglected (due to the shape of the 
cross section)

0 0.2 0.4 0.6 0.8 1
θL/2(rad)

0

20

40

60

80

m
t(1

0^
3N

tm
m

/m
m

)

Present study with CS=0
Trahair (2005)
Linear case Stiffening of the bar due to the 

geometrical nonlinearity

10 0,2114 0,2142
20 0,3618 0,3661
30 0,4741 0,4798
40 0,5643 0,5712
50 0,6403 0,6483
60 0,7063 0,7153
70 0,7650 0,7748

Present study - Angle of twist θx

( )3
tm 10 kNmm / mm 7 6

SC 5.499 10 mm= × SC 0=

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Example 2   Angle section (monosymmetric)

Concentrated torque Mt applied at the free end. 
Three boundary conditions are investigated:

• Warping free at both ends (uniform torsion)

• Warping restrained – Warping free (cantilever)

• Warping restrained – Warping restrained

,

 
 
 

E 89660 MPa
G 31130 MPa
L 177 8 mm

=
=
=

 

. C 

b=14,61mm

b 

S
y
z

t=0,9601mm

t

Constants Present study Attard (1987)

28,06 28,05

999,2 998,0

252,2 249,5

1991 1996

2,544 2,556

-10,22 -10,33

5,135 5,165

8,766 8,620

152,154 -

7,784 7,102

( )2A mm

( )4
YYI mm

( )4
ZZI mm

( )4
pI mm

( )1 mmβ

( )Cy mm

( )4
tI mm

( )6
SC mm

( )3 6
n2I 10 mm×

( )5 6
ppI 10 mm×
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Example 2   Angle section (monosymmetric)

Both geometrical nonlinearity 
and restraint of warping lead to 
stiffening of the bar

0 4 8 12

y(mm)

-12

-8

-4

0

z(
m

m
)

Present study - Warping restrained at both ends
Present study - Warping restrained, warping free
Present study - Warping free at both ends

0 1 2 3 4
θL(rad)

0

2000

4000

6000

8000

M
t(N

tm
m

)

Nonlinear - Warping restrained at both ends
Nonlinear - Warping restrained, warping free
Nonlinear - Warping free at both ends
Linear - Warping free at both ends

Large rotations cause lateral 
displacements of the bar’s cross sections

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Example 3   L-shaped cross-section (asymmetric)

,

Steel L-beam:
 

 
 

E 210000 MPa
G 80769 MPa
L 1 0 m

=
=
=

θ 

Z 

C

b=10.5cm 

h=
15

.5
cm

 

t=1cm 

t=1cm 

S 
 

Y

 

tk  

tM

clamped end elastic support, 
warping free

/tk 200 kNm rad=

25,00 3,688

723,593 3,253

132,198 8,391

1460,417 120,913

172118,37 167,382

8,217 5717,765

3,950 5949,475

0,430

Constants of the bar

( )2A cm

( )4
YYI cm

( )4
ZZI cm

( )4
pI cm

( )6
ppI cm

( )1 cmβ

( )2 cmβ

( )radθ

( )Cy cm

( )Cz cm

( )4
tI cm

( )6
SC cm

( )6
wU cm

( )6
nI cm

( )6
n2I cm

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION

concentrated torsional 
moment at the midpoint



Example 3   L-shaped cross-section (asymmetric)

Torsional rigidity is increased 
due to geometrical nonlinearity

25,00 3,688

723,593 3,253

132,198 8,391

1460,417 120,913

172118,37 167,382

8,217 5717,765

3,950 5949,475

0,430

Constants of the bar

( )2A cm

( )4
YYI cm

( )4
ZZI cm

( )4
pI cm

( )6
ppI cm

( )1 cmβ

( )2 cmβ

( )radθ

( )Cy cm

( )Cz cm

( )4
tI cm

( )6
SC cm

( )6
wU cm

( )6
nI cm

( )6
n2I cm

Maximum values Minimum values

2,1928 0,0000

0,0483 -0,0433

0,0162 -0,0130

0,0026 -0,0041

0 0.5 1 1.5 2 2.5
θL/2(rad)

0

40

80

120

160

200

M
t(k

N
m

)

Geometrically nonlinear case
Geometrically linear case

( )x radθ

( )x rad / cmθ′

( )2
x rad / cmθ ′′

( )3
x rad / cmθ′′′

for tM 170kNm=
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Example 3   L-shaped cross-section (asymmetric)

0 20 40 60 80 100
x(cm)

-40

-20

0

20

40

60

M
t(k

N
m

)

Mt=80kNm
Total twisting moment
Total linear twisting moment
Primary twisting moment
Linear Secondary twisting moment
Nonlinear Secondary twisting moment

0 20 40 60 80 100
x(cm)

-300

-200

-100

0

100

200

M
t(k

N
m

)

Mt=80kNm
Total warping moment
Linear warping moment
Nonlinear warping moment

The nonlinear secondary twisting moment 
(“Wagner” torque) reaches significant values 
locally along the bar

The nonlinear warping moment 
reaches very small values

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



Example 3   L-shaped cross-section (asymmetric)

0 20 40 60 80 100
x(cm)

0

10

20

30

40

50

y,
z(

cm
)

0

0.4

0.8

1.2

1.6

θx
(r

ad
)

Mt=80kNm
Angle of twist - θx
Lateral deflection at y direction - vs
Lateral deflection at z direction - ws

( ) ( ) ( ) ( )
Kinematical boundary conditions:

,  S S S Sv 0 w 0 0 v 0 w 0 0′ ′= = = =

Bars of asymmetric cross-section 
exhibit lateral deflections due to 
geometrical nonlinearity

ELASTIC THEORY OF NONLINEAR NONUNIFORM TORSION



NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

•• Flexural, torsional, flexuralFlexural, torsional, flexural--torsional buckling of beamstorsional buckling of beams: In presence of a compressive : In presence of a compressive 
axial force, the bending rigidity of the beam is reduced (equiliaxial force, the bending rigidity of the beam is reduced (equilibrium of moments in the brium of moments in the 
deformed configuration). When the axial force reaches a criticaldeformed configuration). When the axial force reaches a critical value (buckling load), the value (buckling load), the 
beam exhibits significant flexural, torsional or flexuralbeam exhibits significant flexural, torsional or flexural--torsional deformations. Postbuckling torsional deformations. Postbuckling 
analysis investigates the equilibrium path of the buckled beam.analysis investigates the equilibrium path of the buckled beam.
•• LateralLateral--torsional buckling of beamstorsional buckling of beams: In presence of flexural (bending and/or transverse : In presence of flexural (bending and/or transverse 
shear actions) loading, a beam may exhibit torsional deformationshear actions) loading, a beam may exhibit torsional deformations due to nonlinear coupling s due to nonlinear coupling 
between flexural and torsional deformations caused by large twisbetween flexural and torsional deformations caused by large twisting rotationsting rotations.. When When 
external actions reach a critical value, the bar exhibits signifexternal actions reach a critical value, the bar exhibits significant flexuralicant flexural--torsional (lateraltorsional (lateral--
torsional) deformations. torsional) deformations. Postbuckling analysis investigates the equilibrium path of the Postbuckling analysis investigates the equilibrium path of the 
buckled beambuckled beam..

•• Distortional, local bucklingDistortional, local buckling, etc., etc.



Warping due to 
transverse shear

Warping due to 
torsion

Eccentric Transverse Eccentric Transverse 
Shear Loading Shear Loading QQ

Shear LoadingShear Loading QQ Direct Torsional LoadingDirect Torsional Loading ΜΜt==QQ••ee)

Nonuniform shear 
stress flow due to 

Q

Nonuniform 
shear stress flow 

due to Mt

((DirectDirect: : Equilibrium Torsion,Equilibrium Torsion, IndirectIndirect: : Compatibility TorsionCompatibility Torsion))



• Stress State
&

• Strain State: 
Nonuniform TorsionNonuniform Torsion

Seven degrees of freedom (14x14 [K])
• Additional dof.: Twisting curvature
• Additional stress resultant: Warping 

moment

Warping due to torsion

WarpingWarping duedue toto shearshear <<<< WarpingWarping duedue toto torsiontorsion

Warping due to shear

SHEAR FORCESHEAR FORCE TWISTING MOMENTTWISTING MOMENT

(Significant in Open Shaped Cross 
Sections)

• Stress State (Stress field):
Uniform ShearUniform Shear

• Strain/Deformation State: 

Shear Deformation CoefficientsShear Deformation Coefficients Indirect 
account of warping deformation (Timoshenko, 

1922)



ASSUMPTIONS OF ELASTIC THEORY OF NONLINEAR BENDING 
INCLUDING SHEAR DEFORMATIONS

•• The bar is straightThe bar is straight..
•• The bar is prismaticThe bar is prismatic..
•• Distortional deformations of the cross section are not allowed (Distortional deformations of the cross section are not allowed (cross sectional shape is not cross sectional shape is not 
altered during deformationaltered during deformation ((γγ2323=0=0, , distortiondistortion neglectedneglected))..
•• Cross sections of the beam remain plane during deformation (as Cross sections of the beam remain plane during deformation (as in Timoshenko beam in Timoshenko beam 
theory).theory).
•• Bending rotations of the cross section and aBending rotations of the cross section and axial displacement of the beamxial displacement of the beam are assumed to are assumed to 
be small be small -- Second order geometrically nonlinear analysis (large bending roSecond order geometrically nonlinear analysis (large bending rotations are tations are 
required for a postbuckling analysis)required for a postbuckling analysis)..
•• Twisting rotations are assumed to be small Twisting rotations are assumed to be small (large twisting rotations are required for a (large twisting rotations are required for a 
laterallateral--torsional analysis)torsional analysis)..
•• The material of the bar is homogeneous, isotropic, continuous (nThe material of the bar is homogeneous, isotropic, continuous (no cracking) and linearly o cracking) and linearly 
elastic: Constitutive relations of linear elasticity are valid (elastic: Constitutive relations of linear elasticity are valid (small strain theory)small strain theory)..
•• The distribution of stresses at the bar ends is such so that allThe distribution of stresses at the bar ends is such so that all the aforementioned the aforementioned 
assumptions are validassumptions are valid. . 



NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Displacement Field:Displacement Field: (Arising from the plane sections hypothesis)

 α

ω ΓΚ

r q P= −

q

P
S

K
jj 0Γ Γ= ∪ =

,y v

t

n

s

C

,z w,Z W

1Γ
,Y V

0Γ

zC

yC

( )
CXYZ C

S
Use of the principal   passing through the centroid 
It is assumed that the center of twist  coincides with the shear center

shear system

( ) ( ) ( ) ( ) ( ) ( )Y
P

xZ Su x,y,z u x Z Y x yx x ,zθ θ θ φ′= + − +

( ) ( ) ( )xv x,z v x z xθ= −

( ) ( ) ( )xw x, y w x y xθ= +

( ) ( )Y x w xθ ′≠ −

( ) ( )Z x v xθ ′≠

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

X

y

z
Z

Y

L

S

C
x

C: centroid 
 S: center of twist 

Zp

Yp  

xm  

Ym  

Zm  

Xp  

Xp
Ym  

Yp

xm  

Zm

Zp
S

C

dx



Components of the Green Strain Tensor Components of the Green Strain Tensor (assumption of (assumption of 
moderatemoderate--large deflections and small axial displacement)large deflections and small axial displacement)

2 2
Y Z

xx
d ddu 1 dv dwZ Y

dx dx dx 2 dx dx
θ θε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

yy 0ε = zz 0ε =

P
x x S

xy Z
d ddv z

dx dx dx y
θ θ φγ θ ∂

= − − +
∂

yz 0γ =

P
x x S

xz Y
d ddw y

dx dx dx z
θ θ φγ θ ∂

= + + +
∂

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

Work contributing components of the Second PiolaWork contributing components of the Second Piola--Kirchhoff Kirchhoff 
Stress TensorStress Tensor

( )
2 22

PxY Z
xx S2

dd ddu 1 dv dwS E Z Y
dx dx dx 2 dx dxdx

θθ θ φ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − + + ⎜ + ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

( )
P

B P S
xy xy xy Z xS S S G v G z

y
φθ θ

⎛ ⎞⎛ ⎞⎛ ⎞∂′⎜ ⎟′= + = − + + ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

( )
P

B P S
xz xz xz Y xS S S G w G y

z
φθ θ

⎛ ⎞⎛ ⎞⎛ ⎞∂′⎜ ⎟′= + = + + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠



Differential Equilibrium Equations ofDifferential Equilibrium Equations of 33DD ElasticityElasticity
(Body forces neglected)

The second Piola-Kirchhoff stress components are proved that they may be 
introduced in the longitudinal differential equilibrium equation

Not Satisfied! Inconsistency:

Overall equilibrium of the bar is satisfied (energy principle). The violation of the 
longitudinal equilibrium equation (along x) and of the associated boundary 
condition is due to the unsatisfactory distribution of the shear stresses arising 
from the plane sections hypothesis. Thus, in order to correct at the global level
this unsatisfactory distribution of shear stresses, we introduce shear correction 
factors in the cross sectional shear rigidities at the global equilibrium equations

constant distributi  unsatisfaon: ctory

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

( )
P
S

xy xZS G z
y

G v φθ θ
⎛ ⎞⎛ ⎞⎛ ⎞∂′⎜ ⎟= + ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝

′
⎠

− +

( )
P
S

xz xYS G y
z

G w φθθ
⎛ ⎞⎛ ⎞⎛ ⎞∂′⎜ ⎟= + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎠⎝

′
⎠

+
⎝

Shear stresses due to torsion:
self-equilibrating

 in 

on 

2 P
S

P
S

y z

0

z n y n
n

φ Ω
φ Γ

⎛ ⎞∇ =
⎜ ⎟
∂⎜ ⎟= ⋅ − ⋅⎜ ⎟
∂⎝ ⎠



Stress ResultantsStress Resultants

•• Shear stress resultantsShear stress resultants: : y xy Zy
dvQ S d ... G
dx

A
Ω

Ω θ⎛ ⎞= = = −⎜ ⎟
⎝ ⎠

∫

z xz Yz
dwQ S d ... G
dx

A
Ω

Ω θ⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

∫
: Shear areas with respect

to the y,z axes
y zA , A

yy
y

1A A A
a

κ= = zz
z

1A A A
a

κ= =

: shear correction factors <( )1y z,κ κ
: shear deformation coefficients( )>1y za ,a

⎛ ⎞
⎜ ⎟
⎝ ⎠

From the assumed displacement field we would have
 obtained shear rigidities GA which are larger than the actual ones
Since we are working with the principal shear system of axes  

Thus the relations of shear stress resultants with respect to the kinematical
components are decoupled

yza 0=⇒

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



Stress ResultantsStress Resultants

yy
y

1AA A
a

κ= = zz
z

1AA A
a

κ= =

In general we would have :

Computation of shear deformation coefficients: Energy approach
yza 0≠

yz
yz

yz
1A AA

a
κ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠

exac appt rU

2

U

2 2
y y y

2
x zxz yy z zzQ Q QQ

2 G 2 G G
S S

d
2GΩ

Ω
α αα
Α Α Α

+
+

= +∫

From this theory
From uniform shear
beam theory

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



Stress ResultantsStress Resultants

•• Axial forceAxial force: : xxN S d
Ω

Ω= ∫

2 2du 1 dw 1 dvN EA
dx 2 dx 2 dx

⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

: Surface area of the cross sectionA d
Ω

Ω= ∫

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

The rotations of the infinitesimal surfaces comprising
the cross section which occur during deformation are
taken into account through the definitions of stress
resultants

  geometrically nonlinear analysis (postbuckling analysis):
Requires nonlinear expressions of bending curvatures (or large bending

Third o
 rotati

rde
)

r
ons

→

  geometrically nonlinear analysis (buckling analysis):
Full expression of 

Secon
 i

d order
s requiredN

→

  geometrically nonlinear analysis (buckling analysis):

 is taken as  (p

Line

rinc

arized s

iple of 

econd or

superposition 

der

holds)duN EN A
dx

=

→



Stress ResultantsStress Resultants

•• Bending momentsBending moments: : Y xxM S Zd
Ω

Ω= ∫

Bending moments are defined with respect to the principal shear system
of axes passing through the  of the cross c sentroid ection

Z xxM S Yd
Ω

Ω= − ∫

Y xx
Y Z

Y YZ
d dEI EI
dx

M S Zd ...
dxΩ

Ω θ θ
= −= =∫

Z x
Z Y

Z Zx Y
d dEI EI
d

M S Yd
x

.
x

.
d

.
Ω

Ω θ θ
−= − = =∫

  :

Moments of inertia with respect to the centroid of the cross section

2 2
Y Z YZI Z d , I Y d , I YZd

Ω Ω Ω
Ω Ω Ω= = =∫ ∫ ∫

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



Stress ResultantsStress Resultants

•• Torsional stress resultantsTorsional stress resultants: : 
P P

P P PS S
t xy xzM S z S y d

y zΩ

φ φ Ω
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

Torsional stress resultants are defined with respect to the principal shea
c

r
esy ntstem er o of axes f twist passing through the  of the cross section

P
w xx SS d

Ω
Μ φ Ω= − ∫

P P
P P PS S
t

x
x ty xz

dGIM S z S
dx

y d ...
y zΩ

φ φ Ω θ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= − + + = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

P
w x

x
S 2x

2

SS d . dEC
d

..
xΩ

Μ φ Ω
θ

= − = −=∫

( ) :

Primary torsion constant and warping constant with respect to the
center of twist of the cross section

P P 22 2 PS S
t S SI y z y z d , C d

z yΩ Ω

φ φ Ω φ Ω
⎛ ⎞∂ ∂

= + + − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫ ∫
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Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Method of Equilibrium or Energy Method

TOTAL POTENTIAL ENERGY
2

21 1 1 11

F d F d F 0
dx dx

∂ ∂ ∂
∂θ ∂θ ∂θ

− + =
′ ′′

(Euler–Lagrange eqns)

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

 

S

x,u

z,w Rz 
Rx

M Y 
Rz+dRz 

MY+dMY 

Rx+dRx pX 

pZ 
y,v 

u+duu
w–dw

w 

–dw

dx x 

mY C 

x,u

y,v 

Ry
Rx

MZ  
Ry+dRy 

MZ+dMZ  

Rx+dRx pX 

pY 
z,w 

u+du u
v–dv

v 
–dv

dx x 

m Z C  

S 

Equilibrium of axial forces                 
X

X
dR

p 0
dx

+ =

X z Y y ZR N Q Q Nϕ ϕ= + + ≈

X
dN p 0
dx

+ =

 If the beam's axial force can be determined solely from equilibrium
requirements then the second order and linearized second order theories
yield the same deflections (only axial shortening of the bea

→

m is different)



Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Method of Equilibrium

Equilibrium of bending moments            

Y
z Y

dM Q m 0
dx

− + = Z
y Z

dM Q m 0
dx

+ + =

Equilibrium of transverse shear forces      
y

Y
dR

p 0
dx

+ = z
Z

dR p 0
dx

+ =

 

S

x,u

z,w Rz 
Rx

M Y 
Rz+dRz 

MY+dMY 

Rx+dRx pX 

pZ 
y,v 

u+duu
w–dw

w 

–dw

dx x 

mY C 

x,u

y,v 

Ry
Rx

MZ  
Ry+dRy 

MZ+dMZ  

Rx+dRx pX 

pY 
z,w 

u+du u
v–dv

v 
–dv

dx x 

m Z C  

S 

Α3

Α1

Β1

Α2 

Β2

Α4

Β4
Β3

Α 

Β 

x,u

y,v 

z,w

u(x)

w(x)

–dw/dx 

γxz

θY

dx
–dw Qz

N 

S 

C 

C x
y y y C

dv ddvR Q N Q N z
dx dx dx

θ⎛ ⎞= + = + −⎜ ⎟
⎝ ⎠

C x
z z z C

dw ddwR Q N Q N y
dx dx dx

θ⎛ ⎞= + = + +⎜ ⎟
⎝ ⎠
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Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Method of Equilibrium

Equilibrium of torsional moments                       

S P
t,N t,Nt t t

x Z C Y C
dM dMdM dM dM m p y p z

dx dx dx dx dx
⎛ ⎞ ⎛ ⎞

− + = − + + = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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dx 

S 

S 

t,N t,NM dM+

tM

N

N dN+

t tM dM+

t ,NM

C 

Sw
t

dM M
dx

=

2 P
t,N t,Nt w t

x Z C Y C2
dM dMdM d M dM m p y p z

dx dx dx dxdx

⎛ ⎞ ⎛ ⎞
− + = − + + = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠



Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Equilibrium of axial forces                  

( )
2 2 2

x2 2 2X
d u d w dw d v dvEA p  1

dx dxdx dxx dx
dN p
d

⎡ ⎤
+ + = −⎢ ⎥

⎢ ⎥⎣
=

⎦
− ⇒

Equilibrium of torsional moments                

( )

2 P
t,N t,Nt w t

x Z C Y

4 2 22 2
x x S x

S t C C4 2 2 2 2

S x
x Z C Y C X C

C

C

2

d d dd w d vEC GI N y z
Adx dx dx

dM dMdM d M dM m p y p z

d

dx dx dx dx

x dx

ddw dvm p y p z p y z  2
dx dx A dx

dx

θ θ Ι θ

Ι θ

⎛ ⎞ ⎛ ⎞
− + = − + + = + − ⇒⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝

⎛
⎠

⎞
− − − + =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞+ − − − +⎜

⎝

⎟
⎝ ⎠

⎠

Inside the bar interval

1 2 3a u a N a+ =

1 x 2 t 3Mδ θ δ δ+ = x
1 2 w 3

d M
dx
θδ δ δ+ =

At the bar ends

Coupled system of equations due to geometrical nonlinearity→
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Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Equilibrium of bending moments                       

( )
2 2

Y Z
Y YZ Y Y2z 2

Z

Y
Y

dM Q m d0
dx

d GA dwEI EI m 0 3
a dxdx dx

θ θ θ⎛ ⎞− − + + =⎜ ⎟
⎠

⇒
⎝

− + =

( )
2 2

Z Y
Z YZ Z Z2y 2

Y

Z
Z

dM Q m d0
dx

d GA dvEI EI m 0 4
a dxdx dx

θ θ θ⎛ ⎞− + − + =⎜ ⎟
⎠

⇒
⎝

+ + =

Equilibrium of transverse shear forces                

( )
22 2

x xZ
C C Y2 2 2

Y

y
Y

d ddGA d v dN dv d vz N z p 0 5
a dx dx dx dxdx dx d

d
d x

R
p 0

x
θ θθ

+ =
⎛ ⎞⎛ ⎞ ⎛ ⎞− + − + − + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⇒

( )
22 2

x xY
C C Z2 2 2

Z

z
Z

d ddGA d w dN dw d wy N y p 0 6
a dx dx dx dxd

dR p 0
dx x dx dx

θ θθ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝
⇒

⎠ ⎝ ⎠
+ =

Inside the bar interval

1 2 y 3v Rβ β β+ = 1 2 z 3w Rγ γ γ+ =

1 Z 2 Z 3β θ β Μ β+ = 1 Y 2 Y 3γ θ γ Μ γ+ =
At the bar ends

Coupled system of equations due to principal shear system of axes,
shear deformation effects and geometrical nonlinearity
→
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Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Combination of equations may be performed in order to uncouple the problem 

unknowns - Solution with respect to deflections
Resolution of deflections, twisting rotation and axial displacement:

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

4 2 22 2
x x S x S x

S t c c x Z C Y C X c c X4 2 2 2 2
d d d dd w d v dw dvEC GI N y z m p y p z p y z p

A dx dx A dxdx dx dx dx dx
θ θ Ι θ Ι θ⎛ ⎞ ⎛ ⎞− − − + = + − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2 3 42 24 4 2 3 4
x x x xZZ Y X X

ZZ YZ y C C X C C4 4 2 2 2 2 3 3 4 4

2 2
xYZ Z X

z C2 2

d d d dEI d p d p dpd v d w dv d v d v d vEI EI z 3 z 3 p z N z
GA dx dx dxdx dx dx dx dx dx dx dx dx dx

dEI d p d p dw y
GA dx dxdx dx

θ θ θ θ
α

θ
α

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ + − − − − − − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠

2 3 42 3 4
x x x xX

C X C C Y X C2 2 3 3 4 4

22
x

C2 2

d d d ddp d w d w d w dv3 y 3 p y N y p p z
dx dx dxdx dx dx dx dx dx

dd vN z 0
dx dx

θ θ θ θ

θ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + + + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞

− − =⎜ ⎟⎜ ⎟
⎝ ⎠

2 3 42 24 4 2 3 4
x x x xYY Z X X

YY YZ z C C X C C4 4 2 2 2 2 3 3 4 4

2 2
xYZ Y X

y C2 2

d d d dEI d p d p dpd w d v dw d w d w d wEI EI y 3 y 3 p y N y
GA dx dx dxdx dx dx dx dx dx dx dx dx dx

dEI d p d p dv z
GA dx dxdx dx

θ θ θ θ
α

θ
α

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ + − + − + − + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ − − −⎜ ⎟
⎝ ⎠

2 3 42 3 4
x x x xX

C X C C Z X C2 2 3 3 4 4

22
x

C2 2

d d d ddp d v d v d v dw3 z 3 p z N z p p y
dx dx dxdx dx dx dx dx dx

dd wN y 0
dx dx

θ θ θ θ

θ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − + − − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞

− + =⎜ ⎟⎜ ⎟
⎝ ⎠

2 2 2

x2 2 2
d u d w dw d v dvEA p

dx dxdx dx dx

⎡ ⎤
+ + = −⎢ ⎥

⎢ ⎥⎣ ⎦

Inside the bar interval



Global Equilibrium EquationsGlobal Equilibrium Equations & Boundary conditions& Boundary conditions
Combination of equations may be performed in order to uncouple the problem 

unknowns - Solution with respect to deflections
Resolution of deflections, twisting rotations and axial displacement:

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS

1 2 y 3v Rβ β β+ = 1 2 z 3w Rγ γ γ+ =1 Z 2 Z 3β θ β Μ β+ =

1 Y 2 Y 3γ θ γ Μ γ+ = At the bar ends

1 2 3a u a N a+ =

1 x 2 t 3Mδ θ δ δ+ = x
1 2 w 3

d M
dx
θδ δ δ+ =

3 3
Y YZ Y

Y Z Z Z3 3

2 32 3
2 x x xY Z X
Z C X C C2 2 2 2 3 3

2
xYZ Y X

Y Z C X2 2 2

EI EI mdw d w d v a
dx GA GA GAdx dx

d d dEI dp dp dw d w d wy 2 p y N y
dx dx dx dxG A dx dx dx dx

dEI dp dp dv d vz 2 p
dx dx dx dxG A dx

θ α α

θ θ θ
α

θ
α α

= − − − + −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞− − + − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

2 33
x x

C C2 3 3
d dd vz N z
dx dx dx
θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞

− + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
3 3

Z YZ Z
Z Y Y Y3 3

2 32 3
2 x x xZ Y X
Y C X C C2 2 2 2 3 3

2
xYZ Z X

Z Y C X2 2 2

EI EI mdv d v d w a
dx GA GA GAdx dx

d d dEI dp dp dv d v d vz 2 p z N z
dx dx dx dxG A dx dx dx dx

dEI dp dp dw d wy 2 p
dx dx dx dxG A dx

θ α α

θ θ θ
α

θ
α α

= + + + +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞+ − − − − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ − + − +⎜ ⎟
⎝ ⎠

2 33
x x

C C2 3 3
d dd wy N y
dx dx dx
θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞

+ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

where :

Resolution of bending rotations: With the above expressions
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0.20ν =

l 1.00m=

25cm 

40cm 

5cm 

8cm

22cm 

10cm 5cm5cm

2.5cm 2.5cm 

C 

Ζ 

Υ 

Principal shear axes (at S)

Y

Z  

Sθ

S Sθ

y

z  

2A 0.051m=

7 2E 3.0 10 kN / m= ×

6 6
sC 4.6961 10 m−= ×

4 4
tI 2.6925 10 m−= ×

3 4
SI 1.58159 10 m−= ×

It is worth noting that all 
the geometric constants 
and shear deformation 
coefficients of the cross 
section should be 
evaluated with respect to 
the principal shear 
coordinate system which 
does not coincide with the 
principal bending one

yzS

y z

2a
tan2

a a
θ =

−

Example 1 Simply supported asymmetric cross section beam 
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In the case of simply supported beam the analytical solution can be obtained by 
setting in the differential equations the following expressions of displacement 

= 1
xv A sin

l
π

= 2
xw A sin

l
π =x 3

xA sin
l
πθ

  =
11 12 13 1

21 22 23 2

31 32 33 3

K K K A 0
K K K A 0
K K K A 0

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭

228040228033374206374194P3

100610100607139602139597P2

8188281878113077113073P1

computedanalyticalcomputedanalytical

With Shear DeformationWithout Shear Deformation

The effect of shear deformation is critical for the stability of the beam. The 
actual compressive load that causes the buckling of the beam (P1) is smaller 

than the load we calculate when the shear deformation is ignored.

reduction

28%

system of three 
equations where Kij
are functions of P

Example 1 Simply supported asymmetric cross section beam 
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Various boundary conditions fixed – hinged 

fixed – fixed

hinged – hinged 

 

C 

b2 

b1 

h2

h1 

S y

,z Z  

Y

= × 7 2E 3.0 10 kN / m

= × 7 2G 1.25 10 kN / m

= =1 1b h 0.4m

=l 1.0m

Three cases examined:Three cases examined:

bb22= h= h22= 2 cm= 2 cm

bb22= h= h22= 8 cm= 8 cm

bb22= h= h22= 20 cm= 20 cm

The results have been compared with the corresponding values of 
buckling load arising from the Thin Tube Theory for the case where the 
shear deformation is neglected.

Example 2 Monosymmetric cross section beam 
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266234350017327887b2=h2=20 cm

511695496053774b2=h2=8 cm

972975970b2=h2=2 cm

Present studyPresent studyTTT

with shear deformationwithout shear deformationBoundary 
Conditions

hinged-hinged

506198919375962711b2=h2=20 cm

787828487486145b2=h2=8 cm

143214391436b2=h2=2 cm

Present studyPresent studyTTT

with shear deformationwithout shear deformationBoundary 
Conditions
fixed-fixed

In the third case the 
cross section is no 

longer thin walled. As a 
result, the thin tube 
theory cannot give 
accurate results.

394392679002603002b2=h2=20 cm

621346735267177b2=h2=8 cm

113311391134b2=h2=2 cm

Present studyPresent studyTTT

With shear deformationwithout shear deformationBoundary 
Conditions

fixed-hinged The ignorance of 
shear deformation 

can lead to incorrect 
results which can be 

critical for the 
stability of the 

structure.

Example 2 Monosymmetric cross section beam 
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C 

Ζ 

Υ 

b=10.5cm 

h=
15

.5
cm

 

t=4cm 

t=4cm 

S
Sθ

Principal shear axes (at S) 

Y

Z  

y

z

Sθ
C 

Ζ 

Υ 

b=10.5cm 

h=
15

.5
cm

 

t=1cm 

t=1cm 

3.995cm 

1.
49

5c
m

 

S 

Sθ

Principal shear axes (at S) 

Y

Z  

y

z
Sθ

Example 3 Asymmetric cross section beam  

It is worth noting that all the geometric  
constants and shear deformation 
coefficients of the cross section should be 
evaluated with respect to the principal 
shear coordinate system which does not 
coincide with the principal bending one

yzS

y z

2a
tan 2

a a
θ =

−

length: 1.00 m             E=2.1x108 kN/m2 

v=0.3         Various Boundary Conditions

1st Case:     t = 1 cm

2nd Case: t = 4 cm
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Buckling Load (kN)

9%6%3 %reduction
31295343411759018644912493744 cm

1 %1 %0.9 %reduction
1391140312251237108610961 cm

with 
shear 

deformation

without 
shear 

deformation

with 
shear 

deformation

without 
shear 

deformation

with 
shear 

deformation

without 
shear 

deformation

Fixed-FixedFixed-HingedHinged-Hinged

t

The influence of the shear deformation effect on the buckling load increased due to 
the change of thickness of the cross section from 1cm to 4 cm. Actually, this is a result 
of the increase of stiffness of the beam and therefore, shear deformation becomes 
more critical than bending.

Example 3 Asymmetric cross section beam  
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Linear Analysis - AEM Nonlinear Analysis - AEM Nonlinear Analysis - FEM

.

Clamped Beam with Doubly Symmetric Cross Section

Beam Length l 0.508m= Rectangular Cross Section y zb h 25.4mm 3.175mm× = ×

x

ℓ

pZ

z

Shear Deformation Effect 
can be ignored

Effect of 
geometrical 

nonlinearities 
important

Uniformly Distributed Load pΖ Induced axial load at the bar (due to 
clamped edges)

max w=9.76mm max w=9.77mm

2 2
l
0

du 1 dw EA wN EA dx
dx 2 dx 2l x

⎡ ⎤ ∂⎛ ⎞ ⎛ ⎞= + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫Axial Force

without shear with shear

FEM – AEM 
results coincide

for pz=2.0kN/m    max w=6.31mm (FEM) max w=6.36mm (AEM)

Example 4

Y 1.20α = Z 3.87α =Shear Def. Coefficients

(displacement at middle point)

Elasticity Modulus E 207GPA= v 0.3=

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



Clamped Beam with Monosymmetric Cross Section

Beam Length l 4.5m= Shear Def. Coefficients

Uniformly distributed transverse loading pΖ= pΥ
applied at the cross section’s centroid

230mm 

20mm 

20mm 
250mm 

300mm 

y 
Y 

z, Z 

S 
C 

20mm 

Ya 1.63= Za 3.93=

Loading

Example 5

( )
2 2

l2 2
0

1 EA v wN EA u v w dx
2 2l x x

⎛ ⎞∂ ∂⎡ ⎤ ⎛ ⎞ ⎛ ⎞′ ′ ′= + + = ⎜ + ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫
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Cantilever with asymmetric cross section subjected to 
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Scale factor μ
distributed

150mm 

230mm 

260mm 

20mm 

12mm 

68mm 

30mm 

C 

S 

Sθ

Sθ

Principal shear axes (at S)

z 

y 

Y
Z Z  

Y

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS



Shear deformation effect in displacement w

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00
1 2 3 4 5 6 7 8 9 10

Scale factor μ

Di
sc

re
pa

nc
y 

(%
)

Nonlinear Analysis Linear Analysis

0.00

2.00

4.00

6.00

8.00

10.00

0.00 10.00 20.00 30.00 40.00

v (cm)

sc
al

e 
fa

ct
or

 μ

0.00

2.00

4.00

6.00

8.00

10.00

-30 .00-25.00-20.00-15 .00-10.00-5.000.00

w  (cm )

sc
al

e 
fa

ct
or

 μ

0.00

2.00

4.00

6.00

8.00

10.00

0.00 10 .0 0 20 .0 0 3 0.00 4 0.00

v (cm )

sc
al

e 
fa

ct
or

 μ

(displacements at the middle point  of the beam)
Linear Analysis-AEM-without shear def. Linear Analysis-AEM-with shear def.
Nonlineas Analysis-AEM without shear def. Nonlineas Analysis-AEM-with shear def.

NONLINEAR BENDING OF ELASTIC BEAMS INCLUDING SHEAR DEFORMATIONS
Cantilever with asymmetric cross section subjected to 
distributed transverse and axial loading

Example 6
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